Files
llvm-project/clang/lib/Analysis/GRCoreEngine.cpp
Ted Kremenek 0ecb53a421 ProgramPoint now takes the space of two pointers instead of one. This change was
motivated because it became clear that the number of subclasses of ProgramPoint
would expand and we ran out of bits to represent a pointer variant. As a plus of
this change, BlockEdge program points can now be represented explicitly without
using a cache of CFGBlock* pairs in CFG.

llvm-svn: 56245
2008-09-16 18:44:52 +00:00

471 lines
13 KiB
C++

//==- GRCoreEngine.cpp - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRCoreEngine.h"
#include "clang/AST/Expr.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using llvm::cast;
using llvm::isa;
using namespace clang;
namespace {
class VISIBILITY_HIDDEN DFS : public GRWorkList {
llvm::SmallVector<GRWorkListUnit,20> Stack;
public:
virtual bool hasWork() const {
return !Stack.empty();
}
virtual void Enqueue(const GRWorkListUnit& U) {
Stack.push_back(U);
}
virtual GRWorkListUnit Dequeue() {
assert (!Stack.empty());
const GRWorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
};
} // end anonymous namespace
// Place the dstor for GRWorkList here because it contains virtual member
// functions, and we the code for the dstor generated in one compilation unit.
GRWorkList::~GRWorkList() {}
GRWorkList* GRWorkList::MakeDFS() { return new DFS(); }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
bool GRCoreEngineImpl::ExecuteWorkList(unsigned Steps) {
if (G->num_roots() == 0) { // Initialize the analysis by constructing
// the root if none exists.
CFGBlock* Entry = &getCFG().getEntry();
assert (Entry->empty() &&
"Entry block must be empty.");
assert (Entry->succ_size() == 1 &&
"Entry block must have 1 successor.");
// Get the solitary successor.
CFGBlock* Succ = *(Entry->succ_begin());
// Construct an edge representing the
// starting location in the function.
BlockEdge StartLoc(Entry, Succ);
// Set the current block counter to being empty.
WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
// Generate the root.
GenerateNode(StartLoc, getInitialState(), 0);
}
while (Steps && WList->hasWork()) {
--Steps;
const GRWorkListUnit& WU = WList->Dequeue();
// Set the current block counter.
WList->setBlockCounter(WU.getBlockCounter());
// Retrieve the node.
ExplodedNodeImpl* Node = WU.getNode();
// Dispatch on the location type.
switch (Node->getLocation().getKind()) {
default:
assert (isa<BlockEdge>(Node->getLocation()));
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockEntranceKind:
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockExitKind:
assert (false && "BlockExit location never occur in forward analysis.");
break;
case ProgramPoint::PostLoadKind:
case ProgramPoint::PostStmtKind:
HandlePostStmt(cast<PostStmt>(Node->getLocation()), WU.getBlock(),
WU.getIndex(), Node);
break;
}
}
return WList->hasWork();
}
void GRCoreEngineImpl::HandleBlockEdge(const BlockEdge& L,
ExplodedNodeImpl* Pred) {
CFGBlock* Blk = L.getDst();
// Check if we are entering the EXIT block.
if (Blk == &getCFG().getExit()) {
assert (getCFG().getExit().size() == 0
&& "EXIT block cannot contain Stmts.");
// Process the final state transition.
GREndPathNodeBuilderImpl Builder(Blk, Pred, this);
ProcessEndPath(Builder);
// This path is done. Don't enqueue any more nodes.
return;
}
// FIXME: Should we allow ProcessBlockEntrance to also manipulate state?
if (ProcessBlockEntrance(Blk, Pred->State, WList->getBlockCounter()))
GenerateNode(BlockEntrance(Blk), Pred->State, Pred);
}
void GRCoreEngineImpl::HandleBlockEntrance(const BlockEntrance& L,
ExplodedNodeImpl* Pred) {
// Increment the block counter.
GRBlockCounter Counter = WList->getBlockCounter();
Counter = BCounterFactory.IncrementCount(Counter, L.getBlock()->getBlockID());
WList->setBlockCounter(Counter);
// Process the entrance of the block.
if (Stmt* S = L.getFirstStmt()) {
GRStmtNodeBuilderImpl Builder(L.getBlock(), 0, Pred, this);
ProcessStmt(S, Builder);
}
else
HandleBlockExit(L.getBlock(), Pred);
}
GRCoreEngineImpl::~GRCoreEngineImpl() {
delete WList;
}
void GRCoreEngineImpl::HandleBlockExit(CFGBlock * B, ExplodedNodeImpl* Pred) {
if (Stmt* Term = B->getTerminator()) {
switch (Term->getStmtClass()) {
default:
assert(false && "Analysis for this terminator not implemented.");
break;
case Stmt::BinaryOperatorClass: // '&&' and '||'
HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
return;
case Stmt::ConditionalOperatorClass:
HandleBranch(cast<ConditionalOperator>(Term)->getCond(), Term, B, Pred);
return;
// FIXME: Use constant-folding in CFG construction to simplify this
// case.
case Stmt::ChooseExprClass:
HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::DoStmtClass:
HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::ForStmtClass:
HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::ContinueStmtClass:
case Stmt::BreakStmtClass:
case Stmt::GotoStmtClass:
break;
case Stmt::IfStmtClass:
HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::IndirectGotoStmtClass: {
// Only 1 successor: the indirect goto dispatch block.
assert (B->succ_size() == 1);
GRIndirectGotoNodeBuilderImpl
builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
*(B->succ_begin()), this);
ProcessIndirectGoto(builder);
return;
}
case Stmt::SwitchStmtClass: {
GRSwitchNodeBuilderImpl builder(Pred, B,
cast<SwitchStmt>(Term)->getCond(),
this);
ProcessSwitch(builder);
return;
}
case Stmt::WhileStmtClass:
HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
return;
}
}
assert (B->succ_size() == 1 &&
"Blocks with no terminator should have at most 1 successor.");
GenerateNode(BlockEdge(B, *(B->succ_begin())), Pred->State, Pred);
}
void GRCoreEngineImpl::HandleBranch(Expr* Cond, Stmt* Term, CFGBlock * B,
ExplodedNodeImpl* Pred) {
assert (B->succ_size() == 2);
GRBranchNodeBuilderImpl Builder(B, *(B->succ_begin()), *(B->succ_begin()+1),
Pred, this);
ProcessBranch(Cond, Term, Builder);
}
void GRCoreEngineImpl::HandlePostStmt(const PostStmt& L, CFGBlock* B,
unsigned StmtIdx, ExplodedNodeImpl* Pred) {
assert (!B->empty());
if (StmtIdx == B->size())
HandleBlockExit(B, Pred);
else {
GRStmtNodeBuilderImpl Builder(B, StmtIdx, Pred, this);
ProcessStmt((*B)[StmtIdx], Builder);
}
}
/// GenerateNode - Utility method to generate nodes, hook up successors,
/// and add nodes to the worklist.
void GRCoreEngineImpl::GenerateNode(const ProgramPoint& Loc, const void* State,
ExplodedNodeImpl* Pred) {
bool IsNew;
ExplodedNodeImpl* Node = G->getNodeImpl(Loc, State, &IsNew);
if (Pred)
Node->addPredecessor(Pred); // Link 'Node' with its predecessor.
else {
assert (IsNew);
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
}
// Only add 'Node' to the worklist if it was freshly generated.
if (IsNew) WList->Enqueue(Node);
}
GRStmtNodeBuilderImpl::GRStmtNodeBuilderImpl(CFGBlock* b, unsigned idx,
ExplodedNodeImpl* N, GRCoreEngineImpl* e)
: Eng(*e), B(*b), Idx(idx), Pred(N), LastNode(N) {
Deferred.insert(N);
}
GRStmtNodeBuilderImpl::~GRStmtNodeBuilderImpl() {
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isSink())
GenerateAutoTransition(*I);
}
void GRStmtNodeBuilderImpl::GenerateAutoTransition(ExplodedNodeImpl* N) {
assert (!N->isSink());
PostStmt Loc(getStmt());
if (Loc == N->getLocation()) {
// Note: 'N' should be a fresh node because otherwise it shouldn't be
// a member of Deferred.
Eng.WList->Enqueue(N, B, Idx+1);
return;
}
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(Loc, N->State, &IsNew);
Succ->addPredecessor(N);
if (IsNew)
Eng.WList->Enqueue(Succ, B, Idx+1);
}
static inline ProgramPoint GetPostLoc(Stmt* S, ProgramPoint::Kind K) {
switch (K) {
default:
assert(false && "Invalid PostXXXKind.");
case ProgramPoint::PostStmtKind:
return PostStmt(S);
case ProgramPoint::PostLoadKind:
return PostLoad(S);
case ProgramPoint::PostPurgeDeadSymbolsKind:
return PostPurgeDeadSymbols(S);
}
}
ExplodedNodeImpl*
GRStmtNodeBuilderImpl::generateNodeImpl(Stmt* S, const void* State,
ExplodedNodeImpl* Pred,
ProgramPoint::Kind K) {
bool IsNew;
ProgramPoint Loc = GetPostLoc(S, K);
ExplodedNodeImpl* N = Eng.G->getNodeImpl(Loc, State, &IsNew);
N->addPredecessor(Pred);
Deferred.erase(Pred);
if (IsNew) {
Deferred.insert(N);
LastNode = N;
return N;
}
LastNode = NULL;
return NULL;
}
ExplodedNodeImpl* GRBranchNodeBuilderImpl::generateNodeImpl(const void* State,
bool branch) {
bool IsNew;
ExplodedNodeImpl* Succ =
Eng.G->getNodeImpl(BlockEdge(Src, branch ? DstT : DstF), State, &IsNew);
Succ->addPredecessor(Pred);
if (branch) GeneratedTrue = true;
else GeneratedFalse = true;
if (IsNew) {
Deferred.push_back(Succ);
return Succ;
}
return NULL;
}
GRBranchNodeBuilderImpl::~GRBranchNodeBuilderImpl() {
if (!GeneratedTrue) generateNodeImpl(Pred->State, true);
if (!GeneratedFalse) generateNodeImpl(Pred->State, false);
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isSink()) Eng.WList->Enqueue(*I);
}
ExplodedNodeImpl*
GRIndirectGotoNodeBuilderImpl::generateNodeImpl(const Iterator& I,
const void* St,
bool isSink) {
bool IsNew;
ExplodedNodeImpl* Succ =
Eng.G->getNodeImpl(BlockEdge(Src, I.getBlock()), St, &IsNew);
Succ->addPredecessor(Pred);
if (IsNew) {
if (isSink)
Succ->markAsSink();
else
Eng.WList->Enqueue(Succ);
return Succ;
}
return NULL;
}
ExplodedNodeImpl*
GRSwitchNodeBuilderImpl::generateCaseStmtNodeImpl(const Iterator& I,
const void* St) {
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(BlockEdge(Src, I.getBlock()),
St, &IsNew);
Succ->addPredecessor(Pred);
if (IsNew) {
Eng.WList->Enqueue(Succ);
return Succ;
}
return NULL;
}
ExplodedNodeImpl*
GRSwitchNodeBuilderImpl::generateDefaultCaseNodeImpl(const void* St,
bool isSink) {
// Get the block for the default case.
assert (Src->succ_rbegin() != Src->succ_rend());
CFGBlock* DefaultBlock = *Src->succ_rbegin();
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(BlockEdge(Src, DefaultBlock),
St, &IsNew);
Succ->addPredecessor(Pred);
if (IsNew) {
if (isSink)
Succ->markAsSink();
else
Eng.WList->Enqueue(Succ);
return Succ;
}
return NULL;
}
GREndPathNodeBuilderImpl::~GREndPathNodeBuilderImpl() {
// Auto-generate an EOP node if one has not been generated.
if (!HasGeneratedNode) generateNodeImpl(Pred->State);
}
ExplodedNodeImpl* GREndPathNodeBuilderImpl::generateNodeImpl(const void* State){
HasGeneratedNode = true;
bool IsNew;
ExplodedNodeImpl* Node =
Eng.G->getNodeImpl(BlockEntrance(&B), State, &IsNew);
Node->addPredecessor(Pred);
if (IsNew) {
Node->markAsSink();
Eng.G->addEndOfPath(Node);
return Node;
}
return NULL;
}