Files
llvm-project/lldb/source/Core/ArchSpec.cpp
Greg Clayton ab65b34fdc Added auto completion for architecture names and for platforms.
Modified the OptionGroupOptions to be able to specify only some of the options
that should be appended by using the usage_mask in the group defintions and
also provided a way to remap them to a new usage mask after the copy. This 
allows options to be re-used and also targetted for specific option groups.

Modfied the CommandArgumentType to have a new eArgTypePlatform enumeration.
Taught the option parser to be able to automatically use the appropriate
auto completion for a given options if nothing is explicitly specified
in the option definition. So you don't have to specify it in the option
definition tables.

Renamed the default host platform name to "host", and the default platform
hostname to be "localhost".

Modified the "file" and "platform select" commands to make sure all options
and args are good prior to creating a new platform. Also defer the computation
of the architecture in the file command until all options are parsed and the
platform has either not been specified or reset to a new value to avoid
computing the arch more than once.

Switch the PluginManager code over to using llvm::StringRef for string
comparisons and got rid of all the AccessorXXX functions in lieu of the newer
mutex + collection singleton accessors.

llvm-svn: 129483
2011-04-13 22:47:15 +00:00

668 lines
24 KiB
C++

//===-- ArchSpec.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ArchSpec.h"
#include <stdio.h>
#include <string>
#include "llvm/Support/ELF.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MachO.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/Host.h"
#include "lldb/Target/Platform.h"
using namespace lldb;
using namespace lldb_private;
#define ARCH_SPEC_SEPARATOR_CHAR '-'
namespace lldb_private {
struct CoreDefinition
{
ByteOrder default_byte_order;
uint32_t addr_byte_size;
uint32_t min_opcode_byte_size;
uint32_t max_opcode_byte_size;
llvm::Triple::ArchType machine;
ArchSpec::Core core;
const char *name;
};
}
// This core information can be looked using the ArchSpec::Core as the index
static const CoreDefinition g_core_definitions[ArchSpec::kNumCores] =
{
// TODO: verify alpha has 32 bit fixed instructions
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::alpha , ArchSpec::eCore_alpha_generic , "alpha" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_generic , "arm" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4 , "armv4" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4t , "armv4t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5 , "armv5" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5t , "armv5t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6 , "armv6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7 , "armv7" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7f , "armv7f" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7k , "armv7k" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7s , "armv7s" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_xscale , "xscale" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumb_generic , "thumb" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_generic , "ppc" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc601 , "ppc601" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc602 , "ppc602" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603 , "ppc603" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603e , "ppc603e" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603ev , "ppc603ev" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604 , "ppc604" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604e , "ppc604e" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc620 , "ppc620" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc750 , "ppc750" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7400 , "ppc7400" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7450 , "ppc7450" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc970 , "ppc970" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_generic , "ppc64" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_ppc970_64 , "ppc970-64" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::sparc , ArchSpec::eCore_sparc_generic , "sparc" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::sparcv9, ArchSpec::eCore_sparc9_generic , "sparcv9" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i386 , "i386" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486 , "i486" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486sx , "i486sx" },
{ eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64 , "x86_64" }
};
struct ArchDefinitionEntry
{
ArchSpec::Core core;
uint32_t cpu;
uint32_t sub;
};
struct ArchDefinition
{
ArchitectureType type;
size_t num_entries;
const ArchDefinitionEntry *entries;
uint32_t cpu_mask;
uint32_t sub_mask;
const char *name;
};
uint32_t
ArchSpec::AutoComplete (const char *name, StringList &matches)
{
uint32_t i;
if (name && name[0])
{
for (i = 0; i < ArchSpec::kNumCores; ++i)
{
if (NameMatches(g_core_definitions[i].name, eNameMatchStartsWith, name))
matches.AppendString (g_core_definitions[i].name);
}
}
else
{
for (i = 0; i < ArchSpec::kNumCores; ++i)
matches.AppendString (g_core_definitions[i].name);
}
return matches.GetSize();
}
#define CPU_ANY (UINT32_MAX)
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
static const ArchDefinitionEntry g_macho_arch_entries[] =
{
{ ArchSpec::eCore_arm_generic , llvm::MachO::CPUTypeARM , CPU_ANY },
{ ArchSpec::eCore_arm_generic , llvm::MachO::CPUTypeARM , 0 },
{ ArchSpec::eCore_arm_armv4 , llvm::MachO::CPUTypeARM , 5 },
{ ArchSpec::eCore_arm_armv6 , llvm::MachO::CPUTypeARM , 6 },
{ ArchSpec::eCore_arm_armv5 , llvm::MachO::CPUTypeARM , 7 },
{ ArchSpec::eCore_arm_xscale , llvm::MachO::CPUTypeARM , 8 },
{ ArchSpec::eCore_arm_armv7 , llvm::MachO::CPUTypeARM , 9 },
{ ArchSpec::eCore_arm_armv7f , llvm::MachO::CPUTypeARM , 10 },
{ ArchSpec::eCore_arm_armv7k , llvm::MachO::CPUTypeARM , 12 },
{ ArchSpec::eCore_arm_armv7s , llvm::MachO::CPUTypeARM , 11 },
{ ArchSpec::eCore_thumb_generic , llvm::MachO::CPUTypeARM , 0 },
{ ArchSpec::eCore_ppc_generic , llvm::MachO::CPUTypePowerPC , CPU_ANY },
{ ArchSpec::eCore_ppc_generic , llvm::MachO::CPUTypePowerPC , 0 },
{ ArchSpec::eCore_ppc_ppc601 , llvm::MachO::CPUTypePowerPC , 1 },
{ ArchSpec::eCore_ppc_ppc602 , llvm::MachO::CPUTypePowerPC , 2 },
{ ArchSpec::eCore_ppc_ppc603 , llvm::MachO::CPUTypePowerPC , 3 },
{ ArchSpec::eCore_ppc_ppc603e , llvm::MachO::CPUTypePowerPC , 4 },
{ ArchSpec::eCore_ppc_ppc603ev , llvm::MachO::CPUTypePowerPC , 5 },
{ ArchSpec::eCore_ppc_ppc604 , llvm::MachO::CPUTypePowerPC , 6 },
{ ArchSpec::eCore_ppc_ppc604e , llvm::MachO::CPUTypePowerPC , 7 },
{ ArchSpec::eCore_ppc_ppc620 , llvm::MachO::CPUTypePowerPC , 8 },
{ ArchSpec::eCore_ppc_ppc750 , llvm::MachO::CPUTypePowerPC , 9 },
{ ArchSpec::eCore_ppc_ppc7400 , llvm::MachO::CPUTypePowerPC , 10 },
{ ArchSpec::eCore_ppc_ppc7450 , llvm::MachO::CPUTypePowerPC , 11 },
{ ArchSpec::eCore_ppc_ppc970 , llvm::MachO::CPUTypePowerPC , 100 },
{ ArchSpec::eCore_ppc64_generic , llvm::MachO::CPUTypePowerPC64 , 0 },
{ ArchSpec::eCore_ppc64_ppc970_64 , llvm::MachO::CPUTypePowerPC64 , 100 },
{ ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPUTypeI386 , 3 },
{ ArchSpec::eCore_x86_32_i486 , llvm::MachO::CPUTypeI386 , 4 },
{ ArchSpec::eCore_x86_32_i486sx , llvm::MachO::CPUTypeI386 , 0x84 },
{ ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPUTypeI386 , CPU_ANY },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPUTypeX86_64 , 3 },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPUTypeX86_64 , CPU_ANY }
};
static const ArchDefinition g_macho_arch_def = {
eArchTypeMachO,
sizeof(g_macho_arch_entries)/sizeof(g_macho_arch_entries[0]),
g_macho_arch_entries,
UINT32_MAX, // CPU type mask
0x00FFFFFFu, // CPU subtype mask
"mach-o"
};
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
static const ArchDefinitionEntry g_elf_arch_entries[] =
{
{ ArchSpec::eCore_sparc_generic , llvm::ELF::EM_SPARC , LLDB_INVALID_CPUTYPE }, // Sparc
{ ArchSpec::eCore_x86_32_i386 , llvm::ELF::EM_386 , LLDB_INVALID_CPUTYPE }, // Intel 80386
{ ArchSpec::eCore_x86_32_i486 , llvm::ELF::EM_486 , LLDB_INVALID_CPUTYPE }, // Intel 486 (deprecated)
{ ArchSpec::eCore_ppc_generic , llvm::ELF::EM_PPC , LLDB_INVALID_CPUTYPE }, // PowerPC
{ ArchSpec::eCore_ppc64_generic , llvm::ELF::EM_PPC64 , LLDB_INVALID_CPUTYPE }, // PowerPC64
{ ArchSpec::eCore_arm_generic , llvm::ELF::EM_ARM , LLDB_INVALID_CPUTYPE }, // ARM
{ ArchSpec::eCore_alpha_generic , llvm::ELF::EM_ALPHA , LLDB_INVALID_CPUTYPE }, // DEC Alpha
{ ArchSpec::eCore_sparc9_generic , llvm::ELF::EM_SPARCV9, LLDB_INVALID_CPUTYPE }, // SPARC V9
{ ArchSpec::eCore_x86_64_x86_64 , llvm::ELF::EM_X86_64 , LLDB_INVALID_CPUTYPE }, // AMD64
};
static const ArchDefinition g_elf_arch_def = {
eArchTypeELF,
sizeof(g_elf_arch_entries)/sizeof(g_elf_arch_entries[0]),
g_elf_arch_entries,
UINT32_MAX, // CPU type mask
UINT32_MAX, // CPU subtype mask
"elf",
};
//===----------------------------------------------------------------------===//
// Table of all ArchDefinitions
static const ArchDefinition *g_arch_definitions[] = {
&g_macho_arch_def,
&g_elf_arch_def,
};
static const size_t k_num_arch_definitions =
sizeof(g_arch_definitions) / sizeof(g_arch_definitions[0]);
//===----------------------------------------------------------------------===//
// Static helper functions.
// Get the architecture definition for a given object type.
static const ArchDefinition *
FindArchDefinition (ArchitectureType arch_type)
{
for (unsigned int i = 0; i < k_num_arch_definitions; ++i)
{
const ArchDefinition *def = g_arch_definitions[i];
if (def->type == arch_type)
return def;
}
return NULL;
}
// Get an architecture definition by name.
static const CoreDefinition *
FindCoreDefinition (llvm::StringRef name)
{
for (unsigned int i = 0; i < ArchSpec::kNumCores; ++i)
{
if (name.equals_lower(g_core_definitions[i].name))
return &g_core_definitions[i];
}
return NULL;
}
static inline const CoreDefinition *
FindCoreDefinition (ArchSpec::Core core)
{
if (core >= 0 && core < ArchSpec::kNumCores)
return &g_core_definitions[core];
return NULL;
}
// Get a definition entry by cpu type and subtype.
static const ArchDefinitionEntry *
FindArchDefinitionEntry (const ArchDefinition *def, uint32_t cpu, uint32_t sub)
{
if (def == NULL)
return NULL;
const uint32_t cpu_mask = def->cpu_mask;
const uint32_t sub_mask = def->sub_mask;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i)
{
if ((entries[i].cpu == (cpu_mask & cpu)) &&
(entries[i].sub == (sub_mask & sub)))
return &entries[i];
}
return NULL;
}
static const ArchDefinitionEntry *
FindArchDefinitionEntry (const ArchDefinition *def, ArchSpec::Core core)
{
if (def == NULL)
return NULL;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i)
{
if (entries[i].core == core)
return &entries[i];
}
return NULL;
}
//===----------------------------------------------------------------------===//
// Constructors and destructors.
ArchSpec::ArchSpec() :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid)
{
}
ArchSpec::ArchSpec (const char *triple_cstr, Platform *platform) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid)
{
if (triple_cstr)
SetTriple(triple_cstr, platform);
}
ArchSpec::ArchSpec(const llvm::Triple &triple) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid)
{
SetTriple(triple);
}
ArchSpec::ArchSpec (ArchitectureType arch_type, uint32_t cpu, uint32_t subtype) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid)
{
SetArchitecture (arch_type, cpu, subtype);
}
ArchSpec::~ArchSpec()
{
}
//===----------------------------------------------------------------------===//
// Assignment and initialization.
const ArchSpec&
ArchSpec::operator= (const ArchSpec& rhs)
{
if (this != &rhs)
{
m_triple = rhs.m_triple;
m_core = rhs.m_core;
m_byte_order = rhs.m_byte_order;
}
return *this;
}
void
ArchSpec::Clear()
{
m_triple = llvm::Triple();
m_core = kCore_invalid;
m_byte_order = eByteOrderInvalid;
}
//===----------------------------------------------------------------------===//
// Predicates.
const char *
ArchSpec::GetArchitectureName () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->name;
return "unknown";
}
uint32_t
ArchSpec::GetMachOCPUType () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core);
if (arch_def)
{
return arch_def->cpu;
}
}
return LLDB_INVALID_CPUTYPE;
}
uint32_t
ArchSpec::GetMachOCPUSubType () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core);
if (arch_def)
{
return arch_def->sub;
}
}
return LLDB_INVALID_CPUTYPE;
}
llvm::Triple::ArchType
ArchSpec::GetMachine () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->machine;
return llvm::Triple::UnknownArch;
}
uint32_t
ArchSpec::GetAddressByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->addr_byte_size;
return 0;
}
ByteOrder
ArchSpec::GetDefaultEndian () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->default_byte_order;
return eByteOrderInvalid;
}
lldb::ByteOrder
ArchSpec::GetByteOrder () const
{
if (m_byte_order == eByteOrderInvalid)
return GetDefaultEndian();
return m_byte_order;
}
//===----------------------------------------------------------------------===//
// Mutators.
bool
ArchSpec::SetTriple (const llvm::Triple &triple)
{
m_triple = triple;
llvm::StringRef arch_name (m_triple.getArchName());
const CoreDefinition *core_def = FindCoreDefinition (arch_name);
if (core_def)
{
m_core = core_def->core;
// Set the byte order to the default byte order for an architecture.
// This can be modified if needed for cases when cores handle both
// big and little endian
m_byte_order = core_def->default_byte_order;
}
else
{
Clear();
}
return IsValid();
}
bool
ArchSpec::SetTriple (const char *triple_cstr, Platform *platform)
{
if (triple_cstr || triple_cstr[0])
{
llvm::StringRef triple_stref (triple_cstr);
if (triple_stref.startswith (LLDB_ARCH_DEFAULT))
{
// Special case for the current host default architectures...
if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT))
*this = Host::GetArchitecture (Host::eSystemDefaultArchitecture32);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT))
*this = Host::GetArchitecture (Host::eSystemDefaultArchitecture64);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT))
*this = Host::GetArchitecture (Host::eSystemDefaultArchitecture);
}
else
{
std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
llvm::Triple normalized_triple (triple_stref);
const bool os_specified = normalized_triple.getOSName().size() > 0;
const bool vendor_specified = normalized_triple.getVendorName().size() > 0;
const bool env_specified = normalized_triple.getEnvironmentName().size() > 0;
// If we got an arch only, then default the vendor, os, environment
// to match the platform if one is supplied
if (!(os_specified || vendor_specified || env_specified))
{
if (platform)
{
// If we were given a platform, use the platform's system
// architecture. If this is not available (might not be
// connected) use the first supported architecture.
ArchSpec platform_arch (platform->GetSystemArchitecture());
if (!platform_arch.IsValid())
{
if (!platform->GetSupportedArchitectureAtIndex (0, platform_arch))
platform_arch.Clear();
}
if (platform_arch.IsValid())
{
normalized_triple.setVendor(platform_arch.GetTriple().getVendor());
normalized_triple.setOS(platform_arch.GetTriple().getOS());
normalized_triple.setEnvironment(platform_arch.GetTriple().getEnvironment());
}
}
else
{
// No platform specified, fall back to the host system for
// the default vendor, os, and environment.
llvm::Triple host_triple(llvm::sys::getHostTriple());
normalized_triple.setVendor(host_triple.getVendor());
normalized_triple.setOS(host_triple.getOS());
normalized_triple.setEnvironment(host_triple.getEnvironment());
}
}
SetTriple (normalized_triple);
}
}
else
Clear();
return IsValid();
}
bool
ArchSpec::SetArchitecture (ArchitectureType arch_type, uint32_t cpu, uint32_t sub)
{
m_core = kCore_invalid;
bool update_triple = true;
const ArchDefinition *arch_def = FindArchDefinition(arch_type);
if (arch_def)
{
const ArchDefinitionEntry *arch_def_entry = FindArchDefinitionEntry (arch_def, cpu, sub);
if (arch_def_entry)
{
const CoreDefinition *core_def = FindCoreDefinition (arch_def_entry->core);
if (core_def)
{
m_core = core_def->core;
update_triple = false;
m_triple.setArch (core_def->machine);
if (arch_type == eArchTypeMachO)
{
m_triple.setVendor (llvm::Triple::Apple);
m_triple.setOS (llvm::Triple::Darwin);
}
else
{
m_triple.setVendor (llvm::Triple::UnknownVendor);
m_triple.setOS (llvm::Triple::UnknownOS);
}
}
}
}
CoreUpdated(update_triple);
return IsValid();
}
uint32_t
ArchSpec::GetMinimumOpcodeByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->min_opcode_byte_size;
return 0;
}
uint32_t
ArchSpec::GetMaximumOpcodeByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->max_opcode_byte_size;
return 0;
}
//===----------------------------------------------------------------------===//
// Helper methods.
void
ArchSpec::CoreUpdated (bool update_triple)
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
if (update_triple)
m_triple = llvm::Triple(core_def->name, "unknown", "unknown");
m_byte_order = core_def->default_byte_order;
}
else
{
if (update_triple)
m_triple = llvm::Triple();
m_byte_order = eByteOrderInvalid;
}
}
//===----------------------------------------------------------------------===//
// Operators.
bool
lldb_private::operator== (const ArchSpec& lhs, const ArchSpec& rhs)
{
const ArchSpec::Core lhs_core = lhs.GetCore ();
const ArchSpec::Core rhs_core = rhs.GetCore ();
if (lhs_core == rhs_core)
return true;
if (lhs_core == ArchSpec::kCore_any || rhs_core == ArchSpec::kCore_any)
return true;
if (lhs_core == ArchSpec::kCore_arm_any)
{
if ((rhs_core >= ArchSpec::kCore_arm_first && rhs_core <= ArchSpec::kCore_arm_last) || (rhs_core == ArchSpec::kCore_arm_any))
return true;
}
else if (rhs_core == ArchSpec::kCore_arm_any)
{
if ((lhs_core >= ArchSpec::kCore_arm_first && lhs_core <= ArchSpec::kCore_arm_last) || (lhs_core == ArchSpec::kCore_arm_any))
return true;
}
else if (lhs_core == ArchSpec::kCore_x86_32_any)
{
if ((rhs_core >= ArchSpec::kCore_x86_32_first && rhs_core <= ArchSpec::kCore_x86_32_last) || (rhs_core == ArchSpec::kCore_x86_32_any))
return true;
}
else if (rhs_core == ArchSpec::kCore_x86_32_any)
{
if ((lhs_core >= ArchSpec::kCore_x86_32_first && lhs_core <= ArchSpec::kCore_x86_32_last) || (lhs_core == ArchSpec::kCore_x86_32_any))
return true;
}
else if (lhs_core == ArchSpec::kCore_ppc_any)
{
if ((rhs_core >= ArchSpec::kCore_ppc_first && rhs_core <= ArchSpec::kCore_ppc_last) || (rhs_core == ArchSpec::kCore_ppc_any))
return true;
}
else if (rhs_core == ArchSpec::kCore_ppc_any)
{
if ((lhs_core >= ArchSpec::kCore_ppc_first && lhs_core <= ArchSpec::kCore_ppc_last) || (lhs_core == ArchSpec::kCore_ppc_any))
return true;
}
else if (lhs_core == ArchSpec::kCore_ppc64_any)
{
if ((rhs_core >= ArchSpec::kCore_ppc64_first && rhs_core <= ArchSpec::kCore_ppc64_last) || (rhs_core == ArchSpec::kCore_ppc64_any))
return true;
}
else if (rhs_core == ArchSpec::kCore_ppc64_any)
{
if ((lhs_core >= ArchSpec::kCore_ppc64_first && lhs_core <= ArchSpec::kCore_ppc64_last) || (lhs_core == ArchSpec::kCore_ppc64_any))
return true;
}
return false;
}
bool
lldb_private::operator!= (const ArchSpec& lhs, const ArchSpec& rhs)
{
return !(lhs == rhs);
}
bool
lldb_private::operator<(const ArchSpec& lhs, const ArchSpec& rhs)
{
const ArchSpec::Core lhs_core = lhs.GetCore ();
const ArchSpec::Core rhs_core = rhs.GetCore ();
return lhs_core < rhs_core;
}