Files
llvm-project/clang/lib/Analysis/UninitializedValues.cpp
Ted Kremenek edf22edca0 Teach -Wuninitialized to recognize common "noreturn" idioms in
Objective-C related to NSException.

Fixes <rdar://problem/12287498>

I debated whether or not this logic should be sunk into the CFG
itself.  It's not clear if we should, as different analyses may
wish to have different policies.  We can re-evaluate this in the
future.

llvm-svn: 163760
2012-09-13 00:21:35 +00:00

789 lines
26 KiB
C++

//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements uninitialized values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/PackedVector.h"
#include "llvm/ADT/DenseMap.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
#define DEBUG_LOGGING 0
static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
!vd->isExceptionVariable() &&
vd->getDeclContext() == dc) {
QualType ty = vd->getType();
return ty->isScalarType() || ty->isVectorType();
}
return false;
}
//------------------------------------------------------------------------====//
// DeclToIndex: a mapping from Decls we track to value indices.
//====------------------------------------------------------------------------//
namespace {
class DeclToIndex {
llvm::DenseMap<const VarDecl *, unsigned> map;
public:
DeclToIndex() {}
/// Compute the actual mapping from declarations to bits.
void computeMap(const DeclContext &dc);
/// Return the number of declarations in the map.
unsigned size() const { return map.size(); }
/// Returns the bit vector index for a given declaration.
llvm::Optional<unsigned> getValueIndex(const VarDecl *d) const;
};
}
void DeclToIndex::computeMap(const DeclContext &dc) {
unsigned count = 0;
DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
E(dc.decls_end());
for ( ; I != E; ++I) {
const VarDecl *vd = *I;
if (isTrackedVar(vd, &dc))
map[vd] = count++;
}
}
llvm::Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
if (I == map.end())
return llvm::Optional<unsigned>();
return I->second;
}
//------------------------------------------------------------------------====//
// CFGBlockValues: dataflow values for CFG blocks.
//====------------------------------------------------------------------------//
// These values are defined in such a way that a merge can be done using
// a bitwise OR.
enum Value { Unknown = 0x0, /* 00 */
Initialized = 0x1, /* 01 */
Uninitialized = 0x2, /* 10 */
MayUninitialized = 0x3 /* 11 */ };
static bool isUninitialized(const Value v) {
return v >= Uninitialized;
}
static bool isAlwaysUninit(const Value v) {
return v == Uninitialized;
}
namespace {
typedef llvm::PackedVector<Value, 2> ValueVector;
class CFGBlockValues {
const CFG &cfg;
std::vector<ValueVector*> vals;
ValueVector scratch;
DeclToIndex declToIndex;
public:
CFGBlockValues(const CFG &cfg);
~CFGBlockValues();
unsigned getNumEntries() const { return declToIndex.size(); }
void computeSetOfDeclarations(const DeclContext &dc);
ValueVector &getValueVector(const CFGBlock *block) {
return *vals[block->getBlockID()];
}
void setAllScratchValues(Value V);
void mergeIntoScratch(ValueVector const &source, bool isFirst);
bool updateValueVectorWithScratch(const CFGBlock *block);
bool hasNoDeclarations() const {
return declToIndex.size() == 0;
}
void resetScratch();
ValueVector::reference operator[](const VarDecl *vd);
Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
const VarDecl *vd) {
const llvm::Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
assert(idx.hasValue());
return getValueVector(block)[idx.getValue()];
}
};
} // end anonymous namespace
CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
CFGBlockValues::~CFGBlockValues() {
for (std::vector<ValueVector*>::iterator I = vals.begin(), E = vals.end();
I != E; ++I)
delete *I;
}
void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
declToIndex.computeMap(dc);
unsigned decls = declToIndex.size();
scratch.resize(decls);
unsigned n = cfg.getNumBlockIDs();
if (!n)
return;
vals.resize(n);
for (unsigned i = 0; i < n; ++i)
vals[i] = new ValueVector(decls);
}
#if DEBUG_LOGGING
static void printVector(const CFGBlock *block, ValueVector &bv,
unsigned num) {
llvm::errs() << block->getBlockID() << " :";
for (unsigned i = 0; i < bv.size(); ++i) {
llvm::errs() << ' ' << bv[i];
}
llvm::errs() << " : " << num << '\n';
}
#endif
void CFGBlockValues::setAllScratchValues(Value V) {
for (unsigned I = 0, E = scratch.size(); I != E; ++I)
scratch[I] = V;
}
void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
bool isFirst) {
if (isFirst)
scratch = source;
else
scratch |= source;
}
bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
ValueVector &dst = getValueVector(block);
bool changed = (dst != scratch);
if (changed)
dst = scratch;
#if DEBUG_LOGGING
printVector(block, scratch, 0);
#endif
return changed;
}
void CFGBlockValues::resetScratch() {
scratch.reset();
}
ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
const llvm::Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
assert(idx.hasValue());
return scratch[idx.getValue()];
}
//------------------------------------------------------------------------====//
// Worklist: worklist for dataflow analysis.
//====------------------------------------------------------------------------//
namespace {
class DataflowWorklist {
SmallVector<const CFGBlock *, 20> worklist;
llvm::BitVector enqueuedBlocks;
public:
DataflowWorklist(const CFG &cfg) : enqueuedBlocks(cfg.getNumBlockIDs()) {}
void enqueueSuccessors(const CFGBlock *block);
const CFGBlock *dequeue();
};
}
void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
unsigned OldWorklistSize = worklist.size();
for (CFGBlock::const_succ_iterator I = block->succ_begin(),
E = block->succ_end(); I != E; ++I) {
const CFGBlock *Successor = *I;
if (!Successor || enqueuedBlocks[Successor->getBlockID()])
continue;
worklist.push_back(Successor);
enqueuedBlocks[Successor->getBlockID()] = true;
}
if (OldWorklistSize == 0 || OldWorklistSize == worklist.size())
return;
// Rotate the newly added blocks to the start of the worklist so that it forms
// a proper queue when we pop off the end of the worklist.
std::rotate(worklist.begin(), worklist.begin() + OldWorklistSize,
worklist.end());
}
const CFGBlock *DataflowWorklist::dequeue() {
if (worklist.empty())
return 0;
const CFGBlock *b = worklist.back();
worklist.pop_back();
enqueuedBlocks[b->getBlockID()] = false;
return b;
}
//------------------------------------------------------------------------====//
// Classification of DeclRefExprs as use or initialization.
//====------------------------------------------------------------------------//
namespace {
class FindVarResult {
const VarDecl *vd;
const DeclRefExpr *dr;
public:
FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
const DeclRefExpr *getDeclRefExpr() const { return dr; }
const VarDecl *getDecl() const { return vd; }
};
static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
while (Ex) {
Ex = Ex->IgnoreParenNoopCasts(C);
if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
if (CE->getCastKind() == CK_LValueBitCast) {
Ex = CE->getSubExpr();
continue;
}
}
break;
}
return Ex;
}
/// If E is an expression comprising a reference to a single variable, find that
/// variable.
static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
if (const DeclRefExpr *DRE =
dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (isTrackedVar(VD, DC))
return FindVarResult(VD, DRE);
return FindVarResult(0, 0);
}
/// \brief Classify each DeclRefExpr as an initialization or a use. Any
/// DeclRefExpr which isn't explicitly classified will be assumed to have
/// escaped the analysis and will be treated as an initialization.
class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
public:
enum Class {
Init,
Use,
SelfInit,
Ignore
};
private:
const DeclContext *DC;
llvm::DenseMap<const DeclRefExpr*, Class> Classification;
bool isTrackedVar(const VarDecl *VD) const {
return ::isTrackedVar(VD, DC);
}
void classify(const Expr *E, Class C);
public:
ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
void VisitDeclStmt(DeclStmt *DS);
void VisitUnaryOperator(UnaryOperator *UO);
void VisitBinaryOperator(BinaryOperator *BO);
void VisitCallExpr(CallExpr *CE);
void VisitCastExpr(CastExpr *CE);
void operator()(Stmt *S) { Visit(S); }
Class get(const DeclRefExpr *DRE) const {
llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
= Classification.find(DRE);
if (I != Classification.end())
return I->second;
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (!VD || !isTrackedVar(VD))
return Ignore;
return Init;
}
};
}
static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
if (Expr *Init = VD->getInit()) {
const DeclRefExpr *DRE
= dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
if (DRE && DRE->getDecl() == VD)
return DRE;
}
return 0;
}
void ClassifyRefs::classify(const Expr *E, Class C) {
FindVarResult Var = findVar(E, DC);
if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
Classification[DRE] = std::max(Classification[DRE], C);
}
void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
DI != DE; ++DI) {
VarDecl *VD = dyn_cast<VarDecl>(*DI);
if (VD && isTrackedVar(VD))
if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
Classification[DRE] = SelfInit;
}
}
void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
// Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
// is not a compound-assignment, we will treat it as initializing the variable
// when TransferFunctions visits it. A compound-assignment does not affect
// whether a variable is uninitialized, and there's no point counting it as a
// use.
if (BO->isCompoundAssignmentOp())
classify(BO->getLHS(), Use);
else if (BO->getOpcode() == BO_Assign)
classify(BO->getLHS(), Ignore);
}
void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
// Increment and decrement are uses despite there being no lvalue-to-rvalue
// conversion.
if (UO->isIncrementDecrementOp())
classify(UO->getSubExpr(), Use);
}
void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
// If a value is passed by const reference to a function, we should not assume
// that it is initialized by the call, and we conservatively do not assume
// that it is used.
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I)
if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
classify(*I, Ignore);
}
void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
if (CE->getCastKind() == CK_LValueToRValue)
classify(CE->getSubExpr(), Use);
else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
if (CSE->getType()->isVoidType()) {
// Squelch any detected load of an uninitialized value if
// we cast it to void.
// e.g. (void) x;
classify(CSE->getSubExpr(), Ignore);
}
}
}
//------------------------------------------------------------------------====//
// Transfer function for uninitialized values analysis.
//====------------------------------------------------------------------------//
namespace {
class TransferFunctions : public StmtVisitor<TransferFunctions> {
CFGBlockValues &vals;
const CFG &cfg;
const CFGBlock *block;
AnalysisDeclContext &ac;
const ClassifyRefs &classification;
ObjCNoReturn objCNoRet;
UninitVariablesHandler *handler;
public:
TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
const CFGBlock *block, AnalysisDeclContext &ac,
const ClassifyRefs &classification,
UninitVariablesHandler *handler)
: vals(vals), cfg(cfg), block(block), ac(ac),
classification(classification), objCNoRet(ac.getASTContext()),
handler(handler) {}
void reportUse(const Expr *ex, const VarDecl *vd);
void VisitBinaryOperator(BinaryOperator *bo);
void VisitBlockExpr(BlockExpr *be);
void VisitCallExpr(CallExpr *ce);
void VisitDeclRefExpr(DeclRefExpr *dr);
void VisitDeclStmt(DeclStmt *ds);
void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
void VisitObjCMessageExpr(ObjCMessageExpr *ME);
bool isTrackedVar(const VarDecl *vd) {
return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
}
FindVarResult findVar(const Expr *ex) {
return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
}
UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
UninitUse Use(ex, isAlwaysUninit(v));
assert(isUninitialized(v));
if (Use.getKind() == UninitUse::Always)
return Use;
// If an edge which leads unconditionally to this use did not initialize
// the variable, we can say something stronger than 'may be uninitialized':
// we can say 'either it's used uninitialized or you have dead code'.
//
// We track the number of successors of a node which have been visited, and
// visit a node once we have visited all of its successors. Only edges where
// the variable might still be uninitialized are followed. Since a variable
// can't transfer from being initialized to being uninitialized, this will
// trace out the subgraph which inevitably leads to the use and does not
// initialize the variable. We do not want to skip past loops, since their
// non-termination might be correlated with the initialization condition.
//
// For example:
//
// void f(bool a, bool b) {
// block1: int n;
// if (a) {
// block2: if (b)
// block3: n = 1;
// block4: } else if (b) {
// block5: while (!a) {
// block6: do_work(&a);
// n = 2;
// }
// }
// block7: if (a)
// block8: g();
// block9: return n;
// }
//
// Starting from the maybe-uninitialized use in block 9:
// * Block 7 is not visited because we have only visited one of its two
// successors.
// * Block 8 is visited because we've visited its only successor.
// From block 8:
// * Block 7 is visited because we've now visited both of its successors.
// From block 7:
// * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
// of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
// * Block 3 is not visited because it initializes 'n'.
// Now the algorithm terminates, having visited blocks 7 and 8, and having
// found the frontier is blocks 2, 4, and 5.
//
// 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
// and 4), so we report that any time either of those edges is taken (in
// each case when 'b == false'), 'n' is used uninitialized.
llvm::SmallVector<const CFGBlock*, 32> Queue;
llvm::SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
Queue.push_back(block);
// Specify that we've already visited all successors of the starting block.
// This has the dual purpose of ensuring we never add it to the queue, and
// of marking it as not being a candidate element of the frontier.
SuccsVisited[block->getBlockID()] = block->succ_size();
while (!Queue.empty()) {
const CFGBlock *B = Queue.back();
Queue.pop_back();
for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
I != E; ++I) {
const CFGBlock *Pred = *I;
if (vals.getValue(Pred, B, vd) == Initialized)
// This block initializes the variable.
continue;
unsigned &SV = SuccsVisited[Pred->getBlockID()];
if (!SV) {
// When visiting the first successor of a block, mark all NULL
// successors as having been visited.
for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
SE = Pred->succ_end();
SI != SE; ++SI)
if (!*SI)
++SV;
}
if (++SV == Pred->succ_size())
// All paths from this block lead to the use and don't initialize the
// variable.
Queue.push_back(Pred);
}
}
// Scan the frontier, looking for blocks where the variable was
// uninitialized.
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
const CFGBlock *Block = *BI;
unsigned BlockID = Block->getBlockID();
const Stmt *Term = Block->getTerminator();
if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
Term) {
// This block inevitably leads to the use. If we have an edge from here
// to a post-dominator block, and the variable is uninitialized on that
// edge, we have found a bug.
for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
E = Block->succ_end(); I != E; ++I) {
const CFGBlock *Succ = *I;
if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
vals.getValue(Block, Succ, vd) == Uninitialized) {
// Switch cases are a special case: report the label to the caller
// as the 'terminator', not the switch statement itself. Suppress
// situations where no label matched: we can't be sure that's
// possible.
if (isa<SwitchStmt>(Term)) {
const Stmt *Label = Succ->getLabel();
if (!Label || !isa<SwitchCase>(Label))
// Might not be possible.
continue;
UninitUse::Branch Branch;
Branch.Terminator = Label;
Branch.Output = 0; // Ignored.
Use.addUninitBranch(Branch);
} else {
UninitUse::Branch Branch;
Branch.Terminator = Term;
Branch.Output = I - Block->succ_begin();
Use.addUninitBranch(Branch);
}
}
}
}
}
return Use;
}
};
}
void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
if (!handler)
return;
Value v = vals[vd];
if (isUninitialized(v))
handler->handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
}
void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
// This represents an initialization of the 'element' value.
if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
if (isTrackedVar(VD))
vals[VD] = Initialized;
}
}
void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
const BlockDecl *bd = be->getBlockDecl();
for (BlockDecl::capture_const_iterator i = bd->capture_begin(),
e = bd->capture_end() ; i != e; ++i) {
const VarDecl *vd = i->getVariable();
if (!isTrackedVar(vd))
continue;
if (i->isByRef()) {
vals[vd] = Initialized;
continue;
}
reportUse(be, vd);
}
}
void TransferFunctions::VisitCallExpr(CallExpr *ce) {
if (Decl *Callee = ce->getCalleeDecl()) {
if (Callee->hasAttr<ReturnsTwiceAttr>()) {
// After a call to a function like setjmp or vfork, any variable which is
// initialized anywhere within this function may now be initialized. For
// now, just assume such a call initializes all variables. FIXME: Only
// mark variables as initialized if they have an initializer which is
// reachable from here.
vals.setAllScratchValues(Initialized);
}
else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
// Functions labeled like "analyzer_noreturn" are often used to denote
// "panic" functions that in special debug situations can still return,
// but for the most part should not be treated as returning. This is a
// useful annotation borrowed from the static analyzer that is useful for
// suppressing branch-specific false positives when we call one of these
// functions but keep pretending the path continues (when in reality the
// user doesn't care).
vals.setAllScratchValues(Unknown);
}
}
}
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
switch (classification.get(dr)) {
case ClassifyRefs::Ignore:
break;
case ClassifyRefs::Use:
reportUse(dr, cast<VarDecl>(dr->getDecl()));
break;
case ClassifyRefs::Init:
vals[cast<VarDecl>(dr->getDecl())] = Initialized;
break;
case ClassifyRefs::SelfInit:
if (handler)
handler->handleSelfInit(cast<VarDecl>(dr->getDecl()));
break;
}
}
void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
if (BO->getOpcode() == BO_Assign) {
FindVarResult Var = findVar(BO->getLHS());
if (const VarDecl *VD = Var.getDecl())
vals[VD] = Initialized;
}
}
void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
DI != DE; ++DI) {
VarDecl *VD = dyn_cast<VarDecl>(*DI);
if (VD && isTrackedVar(VD)) {
if (getSelfInitExpr(VD)) {
// If the initializer consists solely of a reference to itself, we
// explicitly mark the variable as uninitialized. This allows code
// like the following:
//
// int x = x;
//
// to deliberately leave a variable uninitialized. Different analysis
// clients can detect this pattern and adjust their reporting
// appropriately, but we need to continue to analyze subsequent uses
// of the variable.
vals[VD] = Uninitialized;
} else if (VD->getInit()) {
// Treat the new variable as initialized.
vals[VD] = Initialized;
} else {
// No initializer: the variable is now uninitialized. This matters
// for cases like:
// while (...) {
// int n;
// use(n);
// n = 0;
// }
// FIXME: Mark the variable as uninitialized whenever its scope is
// left, since its scope could be re-entered by a jump over the
// declaration.
vals[VD] = Uninitialized;
}
}
}
}
void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
// If the Objective-C message expression is an implicit no-return that
// is not modeled in the CFG, set the tracked dataflow values to Unknown.
if (objCNoRet.isImplicitNoReturn(ME)) {
vals.setAllScratchValues(Unknown);
}
}
//------------------------------------------------------------------------====//
// High-level "driver" logic for uninitialized values analysis.
//====------------------------------------------------------------------------//
static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
AnalysisDeclContext &ac, CFGBlockValues &vals,
const ClassifyRefs &classification,
llvm::BitVector &wasAnalyzed,
UninitVariablesHandler *handler = 0) {
wasAnalyzed[block->getBlockID()] = true;
vals.resetScratch();
// Merge in values of predecessor blocks.
bool isFirst = true;
for (CFGBlock::const_pred_iterator I = block->pred_begin(),
E = block->pred_end(); I != E; ++I) {
const CFGBlock *pred = *I;
if (wasAnalyzed[pred->getBlockID()]) {
vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
isFirst = false;
}
}
// Apply the transfer function.
TransferFunctions tf(vals, cfg, block, ac, classification, handler);
for (CFGBlock::const_iterator I = block->begin(), E = block->end();
I != E; ++I) {
if (const CFGStmt *cs = dyn_cast<CFGStmt>(&*I)) {
tf.Visit(const_cast<Stmt*>(cs->getStmt()));
}
}
return vals.updateValueVectorWithScratch(block);
}
void clang::runUninitializedVariablesAnalysis(
const DeclContext &dc,
const CFG &cfg,
AnalysisDeclContext &ac,
UninitVariablesHandler &handler,
UninitVariablesAnalysisStats &stats) {
CFGBlockValues vals(cfg);
vals.computeSetOfDeclarations(dc);
if (vals.hasNoDeclarations())
return;
stats.NumVariablesAnalyzed = vals.getNumEntries();
// Precompute which expressions are uses and which are initializations.
ClassifyRefs classification(ac);
cfg.VisitBlockStmts(classification);
// Mark all variables uninitialized at the entry.
const CFGBlock &entry = cfg.getEntry();
ValueVector &vec = vals.getValueVector(&entry);
const unsigned n = vals.getNumEntries();
for (unsigned j = 0; j < n ; ++j) {
vec[j] = Uninitialized;
}
// Proceed with the workist.
DataflowWorklist worklist(cfg);
llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
worklist.enqueueSuccessors(&cfg.getEntry());
llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
wasAnalyzed[cfg.getEntry().getBlockID()] = true;
while (const CFGBlock *block = worklist.dequeue()) {
// Did the block change?
bool changed = runOnBlock(block, cfg, ac, vals,
classification, wasAnalyzed);
++stats.NumBlockVisits;
if (changed || !previouslyVisited[block->getBlockID()])
worklist.enqueueSuccessors(block);
previouslyVisited[block->getBlockID()] = true;
}
// Run through the blocks one more time, and report uninitialized variabes.
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
const CFGBlock *block = *BI;
if (wasAnalyzed[block->getBlockID()]) {
runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, &handler);
++stats.NumBlockVisits;
}
}
}
UninitVariablesHandler::~UninitVariablesHandler() {}