Files
llvm-project/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
Greg Clayton e0d378b334 Fixed the LLDB build so that we can have private types, private enums and
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.

llvm-svn: 128239
2011-03-24 21:19:54 +00:00

574 lines
30 KiB
C++

//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "GDBRemoteRegisterContext.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
// Project includes
#include "Utility/StringExtractorGDBRemote.h"
#include "ProcessGDBRemote.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_GCC_Registers.h"
#include "Utility/ARM_DWARF_Registers.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// GDBRemoteRegisterContext constructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::GDBRemoteRegisterContext
(
ThreadGDBRemote &thread,
uint32_t concrete_frame_idx,
GDBRemoteDynamicRegisterInfo &reg_info,
bool read_all_at_once
) :
RegisterContext (thread, concrete_frame_idx),
m_reg_info (reg_info),
m_reg_valid (),
m_reg_data (),
m_read_all_at_once (read_all_at_once)
{
// Resize our vector of bools to contain one bool for every register.
// We will use these boolean values to know when a register value
// is valid in m_reg_data.
m_reg_valid.resize (reg_info.GetNumRegisters());
// Make a heap based buffer that is big enough to store all registers
DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
m_reg_data.SetData (reg_data_sp);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
{
}
ProcessGDBRemote &
GDBRemoteRegisterContext::GetGDBProcess()
{
return static_cast<ProcessGDBRemote &>(m_thread.GetProcess());
}
ThreadGDBRemote &
GDBRemoteRegisterContext::GetGDBThread()
{
return static_cast<ThreadGDBRemote &>(m_thread);
}
void
GDBRemoteRegisterContext::InvalidateAllRegisters ()
{
SetAllRegisterValid (false);
}
void
GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
{
std::vector<bool>::iterator pos, end = m_reg_valid.end();
for (pos = m_reg_valid.begin(); pos != end; ++pos)
*pos = b;
}
size_t
GDBRemoteRegisterContext::GetRegisterCount ()
{
return m_reg_info.GetNumRegisters ();
}
const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg)
{
return m_reg_info.GetRegisterInfoAtIndex (reg);
}
size_t
GDBRemoteRegisterContext::GetRegisterSetCount ()
{
return m_reg_info.GetNumRegisterSets ();
}
const RegisterSet *
GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set)
{
return m_reg_info.GetRegisterSet (reg_set);
}
bool
GDBRemoteRegisterContext::ReadRegisterValue (uint32_t reg, Scalar &value)
{
// Read the register
if (ReadRegisterBytes (reg, m_reg_data))
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
uint32_t offset = reg_info->byte_offset;
switch (reg_info->encoding)
{
case eEncodingUint:
switch (reg_info->byte_size)
{
case 1:
case 2:
case 4:
value = m_reg_data.GetMaxU32 (&offset, reg_info->byte_size);
return true;
case 8:
value = m_reg_data.GetMaxU64 (&offset, reg_info->byte_size);
return true;
}
break;
case eEncodingSint:
switch (reg_info->byte_size)
{
case 1:
case 2:
case 4:
value = (int32_t)m_reg_data.GetMaxU32 (&offset, reg_info->byte_size);
return true;
case 8:
value = m_reg_data.GetMaxS64 (&offset, reg_info->byte_size);
return true;
}
break;
case eEncodingIEEE754:
switch (reg_info->byte_size)
{
case sizeof (float):
value = m_reg_data.GetFloat (&offset);
return true;
case sizeof (double):
value = m_reg_data.GetDouble (&offset);
return true;
case sizeof (long double):
value = m_reg_data.GetLongDouble (&offset);
return true;
}
break;
default:
break;
}
}
return false;
}
bool
GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
if (reg_info == NULL)
return false;
// Invalidate if needed
InvalidateIfNeeded(false);
const uint32_t reg_byte_size = reg_info->byte_size;
const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
bool success = bytes_copied == reg_byte_size;
if (success)
{
m_reg_valid[reg] = true;
}
else if (bytes_copied > 0)
{
// Only set register is valid to false if we copied some bytes, else
// leave it as it was.
m_reg_valid[reg] = false;
}
return success;
}
bool
GDBRemoteRegisterContext::ReadRegisterBytes (uint32_t reg, DataExtractor &data)
{
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
InvalidateIfNeeded(false);
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
assert (reg_info);
if (!m_reg_valid[reg])
{
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().SetCurrentGDBRemoteThread(m_thread.GetID()))
{
char packet[64];
StringExtractorGDBRemote response;
int packet_len = 0;
if (m_read_all_at_once)
{
// Get all registers in one packet
if (thread_suffix_supported)
packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4x;", m_thread.GetID());
else
packet_len = ::snprintf (packet, sizeof(packet), "g");
assert (packet_len < (sizeof(packet) - 1));
if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
{
if (response.IsNormalResponse())
if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
SetAllRegisterValid (true);
}
}
else
{
// Get each register individually
if (thread_suffix_supported)
packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4x;", reg, m_thread.GetID());
else
packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
assert (packet_len < (sizeof(packet) - 1));
if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
PrivateSetRegisterValue (reg, response);
}
}
}
// Make sure we got a valid register value after reading it
if (!m_reg_valid[reg])
return false;
}
if (&data != &m_reg_data)
{
// If we aren't extracting into our own buffer (which
// only happens when this function is called from
// ReadRegisterValue(uint32_t, Scalar&)) then
// we transfer bytes from our buffer into the data
// buffer that was passed in
data.SetByteOrder (m_reg_data.GetByteOrder());
data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
}
return true;
}
bool
GDBRemoteRegisterContext::WriteRegisterValue (uint32_t reg, const Scalar &value)
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
if (reg_info)
{
DataExtractor data;
if (value.GetData (data, reg_info->byte_size))
return WriteRegisterBytes (reg, data, 0);
}
return false;
}
bool
GDBRemoteRegisterContext::WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset)
{
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
// FIXME: This check isn't right because IsRunning checks the Public state, but this
// is work you need to do - for instance in ShouldStop & friends - before the public
// state has been changed.
// if (gdb_comm.IsRunning())
// return false;
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
if (reg_info)
{
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == NULL)
return false;
// Grab a pointer to where we are going to grab the new value from
const uint8_t *src = data.PeekData(0, reg_info->byte_size);
if (src == NULL)
return false;
if (data.GetByteOrder() == m_reg_data.GetByteOrder())
{
// No swapping, just copy the bytes
::memcpy (dst, src, reg_info->byte_size);
}
else
{
// Swap the bytes
for (uint32_t i=0; i<reg_info->byte_size; ++i)
dst[i] = src[reg_info->byte_size - 1 - i];
}
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().SetCurrentGDBRemoteThread(m_thread.GetID()))
{
uint32_t offset, end_offset;
StreamString packet;
StringExtractorGDBRemote response;
if (m_read_all_at_once)
{
// Get all registers in one packet
packet.PutChar ('G');
offset = 0;
end_offset = m_reg_data.GetByteSize();
packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
m_reg_data.GetByteSize(),
lldb::endian::InlHostByteOrder(),
lldb::endian::InlHostByteOrder());
if (thread_suffix_supported)
packet.Printf (";thread:%4.4x;", m_thread.GetID());
// Invalidate all register values
InvalidateIfNeeded (true);
if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
packet.GetString().size(),
response,
false))
{
SetAllRegisterValid (false);
if (response.IsOKResponse())
{
return true;
}
}
}
else
{
// Get each register individually
packet.Printf ("P%x=", reg);
packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
reg_info->byte_size,
lldb::endian::InlHostByteOrder(),
lldb::endian::InlHostByteOrder());
if (thread_suffix_supported)
packet.Printf (";thread:%4.4x;", m_thread.GetID());
// Invalidate just this register
m_reg_valid[reg] = false;
if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
packet.GetString().size(),
response,
false))
{
if (response.IsOKResponse())
{
return true;
}
}
}
}
}
}
return false;
}
bool
GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
{
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
StringExtractorGDBRemote response;
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
char packet[32];
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().SetCurrentGDBRemoteThread(m_thread.GetID()))
{
int packet_len = 0;
if (thread_suffix_supported)
packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4x", m_thread.GetID());
else
packet_len = ::snprintf (packet, sizeof(packet), "g");
assert (packet_len < (sizeof(packet) - 1));
if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
{
if (response.IsErrorResponse())
return false;
response.GetStringRef().insert(0, 1, 'G');
if (thread_suffix_supported)
{
char thread_id_cstr[64];
::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4x;", m_thread.GetID());
response.GetStringRef().append (thread_id_cstr);
}
data_sp.reset (new DataBufferHeap (response.GetStringRef().c_str(),
response.GetStringRef().size()));
return true;
}
}
}
return false;
}
bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
{
if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
return false;
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
StringExtractorGDBRemote response;
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().SetCurrentGDBRemoteThread(m_thread.GetID()))
{
if (gdb_comm.SendPacketAndWaitForResponse((const char *)data_sp->GetBytes(),
data_sp->GetByteSize(),
response,
false))
{
if (response.IsOKResponse())
return true;
}
}
}
return false;
}
uint32_t
GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
{
return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
}
void
GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters()
{
static RegisterInfo
g_register_infos[] =
{
// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB NATIVE
// ====== ======= == ==== ============= ============ =============== =============== ========= ===== ===========
{ "r0", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 0 }},
{ "r1", NULL, 4, 4, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 1 }},
{ "r2", NULL, 4, 8, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 2 }},
{ "r3", NULL, 4, 12, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 3 }},
{ "r4", NULL, 4, 16, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 4 }},
{ "r5", NULL, 4, 20, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 5 }},
{ "r6", NULL, 4, 24, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 6 }},
{ "r7", NULL, 4, 28, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM, 7 }},
{ "r8", NULL, 4, 32, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 8 }},
{ "r9", NULL, 4, 36, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 9 }},
{ "r10", NULL, 4, 40, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 10 }},
{ "r11", NULL, 4, 44, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 11 }},
{ "r12", NULL, 4, 48, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 12 }},
{ "sp", "r13", 4, 52, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM, 13 }},
{ "lr", "r14", 4, 56, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM, 14 }},
{ "pc", "r15", 4, 60, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM, 15 }},
{ NULL, NULL, 12, 64, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 16 }},
{ NULL, NULL, 12, 76, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 17 }},
{ NULL, NULL, 12, 88, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 18 }},
{ NULL, NULL, 12, 100, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 19 }},
{ NULL, NULL, 12, 112, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 20 }},
{ NULL, NULL, 12, 124, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 21 }},
{ NULL, NULL, 12, 136, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 22 }},
{ NULL, NULL, 12, 148, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 23 }},
{ NULL, NULL, 12, 160, eEncodingIEEE754, eFormatFloat, { LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 24 }},
{ "cpsr", "psr", 4, 172, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, 25 }},
{ "s0", NULL, 4, 176, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 26 }},
{ "s1", NULL, 4, 180, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 27 }},
{ "s2", NULL, 4, 184, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 28 }},
{ "s3", NULL, 4, 188, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 29 }},
{ "s4", NULL, 4, 192, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 30 }},
{ "s5", NULL, 4, 196, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 31 }},
{ "s6", NULL, 4, 200, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 32 }},
{ "s7", NULL, 4, 204, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 33 }},
{ "s8", NULL, 4, 208, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 34 }},
{ "s9", NULL, 4, 212, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 35 }},
{ "s10", NULL, 4, 216, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 36 }},
{ "s11", NULL, 4, 220, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 37 }},
{ "s12", NULL, 4, 224, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 38 }},
{ "s13", NULL, 4, 228, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 39 }},
{ "s14", NULL, 4, 232, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 40 }},
{ "s15", NULL, 4, 236, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 41 }},
{ "s16", NULL, 4, 240, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 42 }},
{ "s17", NULL, 4, 244, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 43 }},
{ "s18", NULL, 4, 248, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 44 }},
{ "s19", NULL, 4, 252, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 45 }},
{ "s20", NULL, 4, 256, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 46 }},
{ "s21", NULL, 4, 260, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 47 }},
{ "s22", NULL, 4, 264, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 48 }},
{ "s23", NULL, 4, 268, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 49 }},
{ "s24", NULL, 4, 272, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 50 }},
{ "s25", NULL, 4, 276, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 51 }},
{ "s26", NULL, 4, 280, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 52 }},
{ "s27", NULL, 4, 284, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 53 }},
{ "s28", NULL, 4, 288, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 54 }},
{ "s29", NULL, 4, 292, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 55 }},
{ "s30", NULL, 4, 296, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 56 }},
{ "s31", NULL, 4, 300, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 57 }},
{ "fpscr", NULL, 4, 304, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58 }},
{ "d16", NULL, 8, 308, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 59 }},
{ "d17", NULL, 8, 316, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 60 }},
{ "d18", NULL, 8, 324, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 61 }},
{ "d19", NULL, 8, 332, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 62 }},
{ "d20", NULL, 8, 340, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 63 }},
{ "d21", NULL, 8, 348, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 64 }},
{ "d22", NULL, 8, 356, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 65 }},
{ "d23", NULL, 8, 364, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 66 }},
{ "d24", NULL, 8, 372, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 67 }},
{ "d25", NULL, 8, 380, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 68 }},
{ "d26", NULL, 8, 388, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 69 }},
{ "d27", NULL, 8, 396, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 70 }},
{ "d28", NULL, 8, 404, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 71 }},
{ "d29", NULL, 8, 412, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 72 }},
{ "d30", NULL, 8, 420, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 73 }},
{ "d31", NULL, 8, 428, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 74 }},
};
static const uint32_t num_registers = sizeof (g_register_infos)/sizeof (RegisterInfo);
static ConstString gpr_reg_set ("General Purpose Registers");
static ConstString vfp_reg_set ("Floating Point Registers");
for (uint32_t i=0; i<num_registers; ++i)
{
ConstString name;
ConstString alt_name;
if (g_register_infos[i].name && g_register_infos[i].name[0])
name.SetCString(g_register_infos[i].name);
if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
alt_name.SetCString(g_register_infos[i].alt_name);
AddRegister (g_register_infos[i], name, alt_name, i < 26 ? gpr_reg_set : vfp_reg_set);
}
}