Files
llvm-project/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
Greg Clayton 5fe15d2d52 Fixed an issue in GDBRemoteCommunicationClient where we weren't listening to
the "payload_length" argument for the "payload" packet data. This meant we 
could end up sending random extra data with a packet depending on how the 
packet was constructed.

Fixed GDBRemoteRegisterContext to properly save and restore all registers. 
Previous fixes had been added to work around the "payload_length" issues fixed
above and aren't needed anymore.

Fix logging in GDBRemoteCommunication to make sure we log the correct packet
data being sent by using the packet length when dumping the packet contents.

Added register definitions for 'arm-lldb' in the "disasm-gdb-remote.pl" script
so if you have a register dump from the GDB remote that doesn't include the
qRegisterInfo packets, you can manually tell the script which registers are
which.

llvm-svn: 131715
2011-05-20 03:15:54 +00:00

603 lines
31 KiB
C++

//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "GDBRemoteRegisterContext.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
// Project includes
#include "Utility/StringExtractorGDBRemote.h"
#include "ProcessGDBRemote.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_GCC_Registers.h"
#include "Utility/ARM_DWARF_Registers.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// GDBRemoteRegisterContext constructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::GDBRemoteRegisterContext
(
ThreadGDBRemote &thread,
uint32_t concrete_frame_idx,
GDBRemoteDynamicRegisterInfo &reg_info,
bool read_all_at_once
) :
RegisterContext (thread, concrete_frame_idx),
m_reg_info (reg_info),
m_reg_valid (),
m_reg_data (),
m_read_all_at_once (read_all_at_once)
{
// Resize our vector of bools to contain one bool for every register.
// We will use these boolean values to know when a register value
// is valid in m_reg_data.
m_reg_valid.resize (reg_info.GetNumRegisters());
// Make a heap based buffer that is big enough to store all registers
DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
m_reg_data.SetData (reg_data_sp);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
{
}
ProcessGDBRemote &
GDBRemoteRegisterContext::GetGDBProcess()
{
return static_cast<ProcessGDBRemote &>(m_thread.GetProcess());
}
ThreadGDBRemote &
GDBRemoteRegisterContext::GetGDBThread()
{
return static_cast<ThreadGDBRemote &>(m_thread);
}
void
GDBRemoteRegisterContext::InvalidateAllRegisters ()
{
SetAllRegisterValid (false);
}
void
GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
{
std::vector<bool>::iterator pos, end = m_reg_valid.end();
for (pos = m_reg_valid.begin(); pos != end; ++pos)
*pos = b;
}
size_t
GDBRemoteRegisterContext::GetRegisterCount ()
{
return m_reg_info.GetNumRegisters ();
}
const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg)
{
return m_reg_info.GetRegisterInfoAtIndex (reg);
}
size_t
GDBRemoteRegisterContext::GetRegisterSetCount ()
{
return m_reg_info.GetNumRegisterSets ();
}
const RegisterSet *
GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set)
{
return m_reg_info.GetRegisterSet (reg_set);
}
bool
GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
{
// Read the register
if (ReadRegisterBytes (reg_info, value, m_reg_data))
{
const bool partial_data_ok = false;
Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
return error.Success();
}
return false;
}
bool
GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
if (reg_info == NULL)
return false;
// Invalidate if needed
InvalidateIfNeeded(false);
const uint32_t reg_byte_size = reg_info->byte_size;
const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
bool success = bytes_copied == reg_byte_size;
if (success)
{
m_reg_valid[reg] = true;
}
else if (bytes_copied > 0)
{
// Only set register is valid to false if we copied some bytes, else
// leave it as it was.
m_reg_valid[reg] = false;
}
return success;
}
bool
GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
{
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
InvalidateIfNeeded(false);
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (!m_reg_valid[reg])
{
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().GetGDBRemote().SetCurrentThread(m_thread.GetID()))
{
char packet[64];
StringExtractorGDBRemote response;
int packet_len = 0;
if (m_read_all_at_once)
{
// Get all registers in one packet
if (thread_suffix_supported)
packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4x;", m_thread.GetID());
else
packet_len = ::snprintf (packet, sizeof(packet), "g");
assert (packet_len < (sizeof(packet) - 1));
if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
{
if (response.IsNormalResponse())
if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
SetAllRegisterValid (true);
}
}
else
{
// Get each register individually
if (thread_suffix_supported)
packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4x;", reg, m_thread.GetID());
else
packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
assert (packet_len < (sizeof(packet) - 1));
if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
PrivateSetRegisterValue (reg, response);
}
}
}
// Make sure we got a valid register value after reading it
if (!m_reg_valid[reg])
return false;
}
if (&data != &m_reg_data)
{
// If we aren't extracting into our own buffer (which
// only happens when this function is called from
// ReadRegisterValue(uint32_t, Scalar&)) then
// we transfer bytes from our buffer into the data
// buffer that was passed in
data.SetByteOrder (m_reg_data.GetByteOrder());
data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
}
return true;
}
bool
GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
const RegisterValue &value)
{
DataExtractor data;
if (value.GetData (data))
return WriteRegisterBytes (reg_info, data, 0);
return false;
}
bool
GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
{
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
// FIXME: This check isn't right because IsRunning checks the Public state, but this
// is work you need to do - for instance in ShouldStop & friends - before the public
// state has been changed.
// if (gdb_comm.IsRunning())
// return false;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == NULL)
return false;
if (data.CopyByteOrderedData (data_offset, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().GetGDBRemote().SetCurrentThread(m_thread.GetID()))
{
uint32_t offset, end_offset;
StreamString packet;
StringExtractorGDBRemote response;
if (m_read_all_at_once)
{
// Get all registers in one packet
packet.PutChar ('G');
offset = 0;
end_offset = m_reg_data.GetByteSize();
packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
m_reg_data.GetByteSize(),
lldb::endian::InlHostByteOrder(),
lldb::endian::InlHostByteOrder());
if (thread_suffix_supported)
packet.Printf (";thread:%4.4x;", m_thread.GetID());
// Invalidate all register values
InvalidateIfNeeded (true);
if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
packet.GetString().size(),
response,
false))
{
SetAllRegisterValid (false);
if (response.IsOKResponse())
{
return true;
}
}
}
else
{
// Get each register individually
packet.Printf ("P%x=", reg);
packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
reg_info->byte_size,
lldb::endian::InlHostByteOrder(),
lldb::endian::InlHostByteOrder());
if (thread_suffix_supported)
packet.Printf (";thread:%4.4x;", m_thread.GetID());
// Invalidate just this register
m_reg_valid[reg] = false;
if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
packet.GetString().size(),
response,
false))
{
if (response.IsOKResponse())
{
return true;
}
}
}
}
}
}
return false;
}
bool
GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
{
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
StringExtractorGDBRemote response;
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
char packet[32];
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().GetGDBRemote().SetCurrentThread(m_thread.GetID()))
{
int packet_len = 0;
if (thread_suffix_supported)
packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4x", m_thread.GetID());
else
packet_len = ::snprintf (packet, sizeof(packet), "g");
assert (packet_len < (sizeof(packet) - 1));
if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
{
if (response.IsErrorResponse())
return false;
std::string &response_str = response.GetStringRef();
if (isxdigit(response_str[0]))
{
response_str.insert(0, 1, 'G');
if (thread_suffix_supported)
{
char thread_id_cstr[64];
::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4x;", m_thread.GetID());
response_str.append (thread_id_cstr);
}
data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
return true;
}
}
}
}
data_sp.reset();
return false;
}
bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
{
if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
return false;
GDBRemoteCommunicationClient &gdb_comm (GetGDBProcess().GetGDBRemote());
StringExtractorGDBRemote response;
Mutex::Locker locker;
if (gdb_comm.GetSequenceMutex (locker))
{
const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
if (thread_suffix_supported || GetGDBProcess().GetGDBRemote().SetCurrentThread(m_thread.GetID()))
{
// The data_sp contains the entire G response packet including the
// G, and if the thread suffix is supported, it has the thread suffix
// as well.
const char *G_packet = (const char *)data_sp->GetBytes();
size_t G_packet_len = data_sp->GetByteSize();
if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
G_packet_len,
response,
false))
{
if (response.IsOKResponse())
return true;
else if (response.IsErrorResponse())
{
uint32_t num_restored = 0;
// We need to manually go through all of the registers and
// restore them manually
response.GetStringRef().assign (G_packet, G_packet_len);
response.SetFilePos(1); // Skip the leading 'G'
DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
DataExtractor restore_data (buffer.GetBytes(),
buffer.GetByteSize(),
m_reg_data.GetByteOrder(),
m_reg_data.GetAddressByteSize());
const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
restore_data.GetByteSize(),
'\xcc');
if (bytes_extracted < restore_data.GetByteSize())
restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
//ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
const RegisterInfo *reg_info;
for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx)
{
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
// Only write down the registers that need to be written
// if we are going to be doing registers individually.
bool write_reg = true;
const uint32_t reg_byte_offset = reg_info->byte_offset;
const uint32_t reg_byte_size = reg_info->byte_size;
const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
if (restore_src)
{
if (m_reg_valid[reg])
{
const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
if (current_src)
write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
}
if (write_reg)
{
StreamString packet;
packet.Printf ("P%x=", reg);
packet.PutBytesAsRawHex8 (restore_src,
reg_byte_size,
lldb::endian::InlHostByteOrder(),
lldb::endian::InlHostByteOrder());
if (thread_suffix_supported)
packet.Printf (";thread:%4.4x;", m_thread.GetID());
m_reg_valid[reg] = false;
if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
packet.GetString().size(),
response,
false))
{
if (response.IsOKResponse())
++num_restored;
}
}
}
}
return num_restored > 0;
}
}
}
}
return false;
}
uint32_t
GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
{
return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
}
void
GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters()
{
static RegisterInfo g_register_infos[] = {
// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB
// ====== ====== === === ============= ============ =================== =================== ====================== === ====
{ "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }},
{ "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }},
{ "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }},
{ "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }},
{ "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }},
{ "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }},
{ "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }},
{ "r7", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }},
{ "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }},
{ "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }},
{ "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }},
{ "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }},
{ "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }},
{ "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }},
{ "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }},
{ "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }},
{ "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }},
{ "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }},
{ "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }},
{ "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }},
{ "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }},
{ "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }},
{ "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }},
{ "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }},
{ "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }},
{ "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }},
{ "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }},
{ "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }},
{ "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }},
{ "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }},
{ "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }},
{ "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }},
{ "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }},
{ "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }},
{ "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }},
{ "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }},
{ "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }},
{ "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }},
{ "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }},
{ "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }},
{ "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }},
{ "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }},
{ "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }},
{ "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }},
{ "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }},
{ "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }},
{ "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }},
{ "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }},
{ "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }},
{ "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }},
{ "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }},
{ "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }},
{ "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }},
{ "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }},
{ "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }},
{ "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }},
{ "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }},
{ "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }},
{ "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }},
{ "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }},
{ "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }},
{ "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }},
{ "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }},
{ "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }},
{ "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }},
{ "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }},
{ "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }},
{ "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }},
{ "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }},
{ "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }},
{ "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }},
{ "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }},
{ "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }},
{ "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }},
{ "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }},
};
static const uint32_t num_registers = sizeof (g_register_infos)/sizeof (RegisterInfo);
static ConstString gpr_reg_set ("General Purpose Registers");
static ConstString sfp_reg_set ("Software Floating Point Registers");
static ConstString vfp_reg_set ("Floating Point Registers");
uint32_t i;
// Calculate the offsets of the registers
if (g_register_infos[2].byte_offset == 0)
{
uint32_t byte_offset = 0;
for (i=0; i<num_registers; ++i)
{
g_register_infos[i].byte_offset = byte_offset;
byte_offset += g_register_infos[i].byte_size;
}
}
for (i=0; i<num_registers; ++i)
{
ConstString name;
ConstString alt_name;
if (g_register_infos[i].name && g_register_infos[i].name[0])
name.SetCString(g_register_infos[i].name);
if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
alt_name.SetCString(g_register_infos[i].alt_name);
if (i <= 15 || i == 25)
AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
else if (i <= 24)
AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
else
AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
}
}