Files
llvm-project/lld/ELF/ICF.cpp
Peter Collingbourne bfd5113ca1 ELF: Teach ICF about relocations referring to merge input sections.
Relocations referring to merge sections are considered equal if they
resolve to the same offset in the same output section.

Differential Revision: https://reviews.llvm.org/D34094

llvm-svn: 305177
2017-06-12 00:05:54 +00:00

436 lines
16 KiB
C++

//===- ICF.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. This is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// In ICF, two sections are considered identical if they have the same
// section flags, section data, and relocations. Relocations are tricky,
// because two relocations are considered the same if they have the same
// relocation types, values, and if they point to the same sections *in
// terms of ICF*.
//
// Here is an example. If foo and bar defined below are compiled to the
// same machine instructions, ICF can and should merge the two, although
// their relocations point to each other.
//
// void foo() { bar(); }
// void bar() { foo(); }
//
// If you merge the two, their relocations point to the same section and
// thus you know they are mergeable, but how do you know they are
// mergeable in the first place? This is not an easy problem to solve.
//
// What we are doing in LLD is to partition sections into equivalence
// classes. Sections in the same equivalence class when the algorithm
// terminates are considered identical. Here are details:
//
// 1. First, we partition sections using their hash values as keys. Hash
// values contain section types, section contents and numbers of
// relocations. During this step, relocation targets are not taken into
// account. We just put sections that apparently differ into different
// equivalence classes.
//
// 2. Next, for each equivalence class, we visit sections to compare
// relocation targets. Relocation targets are considered equivalent if
// their targets are in the same equivalence class. Sections with
// different relocation targets are put into different equivalence
// clases.
//
// 3. If we split an equivalence class in step 2, two relocations
// previously target the same equivalence class may now target
// different equivalence classes. Therefore, we repeat step 2 until a
// convergence is obtained.
//
// 4. For each equivalence class C, pick an arbitrary section in C, and
// merge all the other sections in C with it.
//
// For small programs, this algorithm needs 3-5 iterations. For large
// programs such as Chromium, it takes more than 20 iterations.
//
// This algorithm was mentioned as an "optimistic algorithm" in [1],
// though gold implements a different algorithm than this.
//
// We parallelize each step so that multiple threads can work on different
// equivalence classes concurrently. That gave us a large performance
// boost when applying ICF on large programs. For example, MSVC link.exe
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
// faster than MSVC or gold though.
//
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
// in the Gold Linker
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "Config.h"
#include "SymbolTable.h"
#include "Threads.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELF.h"
#include <algorithm>
#include <atomic>
using namespace lld;
using namespace lld::elf;
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
namespace {
template <class ELFT> class ICF {
public:
void run();
private:
void segregate(size_t Begin, size_t End, bool Constant);
template <class RelTy>
bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
const InputSection *B, ArrayRef<RelTy> RelsB);
template <class RelTy>
bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
const InputSection *B, ArrayRef<RelTy> RelsB);
bool equalsConstant(const InputSection *A, const InputSection *B);
bool equalsVariable(const InputSection *A, const InputSection *B);
size_t findBoundary(size_t Begin, size_t End);
void forEachClassRange(size_t Begin, size_t End,
std::function<void(size_t, size_t)> Fn);
void forEachClass(std::function<void(size_t, size_t)> Fn);
std::vector<InputSection *> Sections;
// We repeat the main loop while `Repeat` is true.
std::atomic<bool> Repeat;
// The main loop counter.
int Cnt = 0;
// We have two locations for equivalence classes. On the first iteration
// of the main loop, Class[0] has a valid value, and Class[1] contains
// garbage. We read equivalence classes from slot 0 and write to slot 1.
// So, Class[0] represents the current class, and Class[1] represents
// the next class. On each iteration, we switch their roles and use them
// alternately.
//
// Why are we doing this? Recall that other threads may be working on
// other equivalence classes in parallel. They may read sections that we
// are updating. We cannot update equivalence classes in place because
// it breaks the invariance that all possibly-identical sections must be
// in the same equivalence class at any moment. In other words, the for
// loop to update equivalence classes is not atomic, and that is
// observable from other threads. By writing new classes to other
// places, we can keep the invariance.
//
// Below, `Current` has the index of the current class, and `Next` has
// the index of the next class. If threading is enabled, they are either
// (0, 1) or (1, 0).
//
// Note on single-thread: if that's the case, they are always (0, 0)
// because we can safely read the next class without worrying about race
// conditions. Using the same location makes this algorithm converge
// faster because it uses results of the same iteration earlier.
int Current = 0;
int Next = 0;
};
}
// Returns a hash value for S. Note that the information about
// relocation targets is not included in the hash value.
template <class ELFT> static uint32_t getHash(InputSection *S) {
return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
}
// Returns true if section S is subject of ICF.
static bool isEligible(InputSection *S) {
// .init and .fini contains instructions that must be executed to
// initialize and finalize the process. They cannot and should not
// be merged.
return S->Live && (S->Flags & SHF_ALLOC) && (S->Flags & SHF_EXECINSTR) &&
!(S->Flags & SHF_WRITE) && S->Name != ".init" && S->Name != ".fini";
}
// Split an equivalence class into smaller classes.
template <class ELFT>
void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
// This loop rearranges sections in [Begin, End) so that all sections
// that are equal in terms of equals{Constant,Variable} are contiguous
// in [Begin, End).
//
// The algorithm is quadratic in the worst case, but that is not an
// issue in practice because the number of the distinct sections in
// each range is usually very small.
while (Begin < End) {
// Divide [Begin, End) into two. Let Mid be the start index of the
// second group.
auto Bound =
std::stable_partition(Sections.begin() + Begin + 1,
Sections.begin() + End, [&](InputSection *S) {
if (Constant)
return equalsConstant(Sections[Begin], S);
return equalsVariable(Sections[Begin], S);
});
size_t Mid = Bound - Sections.begin();
// Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
// updating the sections in [Begin, Mid). We use Mid as an equivalence
// class ID because every group ends with a unique index.
for (size_t I = Begin; I < Mid; ++I)
Sections[I]->Class[Next] = Mid;
// If we created a group, we need to iterate the main loop again.
if (Mid != End)
Repeat = true;
Begin = Mid;
}
}
// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
const InputSection *B, ArrayRef<RelTy> RelsB) {
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
if (RA.r_offset != RB.r_offset ||
RA.getType(Config->IsMips64EL) != RB.getType(Config->IsMips64EL))
return false;
uint64_t AddA = getAddend<ELFT>(RA);
uint64_t AddB = getAddend<ELFT>(RB);
SymbolBody &SA = A->template getFile<ELFT>()->getRelocTargetSym(RA);
SymbolBody &SB = B->template getFile<ELFT>()->getRelocTargetSym(RB);
if (&SA == &SB)
return AddA == AddB;
auto *DA = dyn_cast<DefinedRegular>(&SA);
auto *DB = dyn_cast<DefinedRegular>(&SB);
if (!DA || !DB)
return false;
// Relocations referring to absolute symbols are constant-equal if their
// values are equal.
if (!DA->Section || !DB->Section)
return !DA->Section && !DB->Section &&
DA->Value + AddA == DB->Value + AddB;
if (DA->Section->kind() != DB->Section->kind())
return false;
// Relocations referring to InputSections are constant-equal if their
// section offsets are equal.
if (isa<InputSection>(DA->Section))
return DA->Value + AddA == DB->Value + AddB;
// Relocations referring to MergeInputSections are constant-equal if their
// offsets in the output section are equal.
auto *X = dyn_cast<MergeInputSection>(DA->Section);
if (!X)
return false;
auto *Y = cast<MergeInputSection>(DB->Section);
if (X->getParent() != Y->getParent())
return false;
uint64_t OffsetA =
SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
uint64_t OffsetB =
SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
return OffsetA == OffsetB;
};
return RelsA.size() == RelsB.size() &&
std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "non-moving" part of two InputSections, namely everything
// except relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
A->getSize() != B->getSize() || A->Data != B->Data)
return false;
if (A->AreRelocsRela)
return constantEq(A, A->template relas<ELFT>(), B,
B->template relas<ELFT>());
return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
}
// Compare two lists of relocations. Returns true if all pairs of
// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
const InputSection *B, ArrayRef<RelTy> RelsB) {
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
// The two sections must be identical.
SymbolBody &SA = A->template getFile<ELFT>()->getRelocTargetSym(RA);
SymbolBody &SB = B->template getFile<ELFT>()->getRelocTargetSym(RB);
if (&SA == &SB)
return true;
auto *DA = cast<DefinedRegular>(&SA);
auto *DB = cast<DefinedRegular>(&SB);
// We already dealt with absolute and non-InputSection symbols in
// constantEq, and for InputSections we have already checked everything
// except the equivalence class.
if (!DA->Section)
return true;
auto *X = dyn_cast<InputSection>(DA->Section);
if (!X)
return true;
auto *Y = cast<InputSection>(DB->Section);
// Ineligible sections are in the special equivalence class 0.
// They can never be the same in terms of the equivalence class.
if (X->Class[Current] == 0)
return false;
return X->Class[Current] == Y->Class[Current];
};
return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
if (A->AreRelocsRela)
return variableEq(A, A->template relas<ELFT>(), B,
B->template relas<ELFT>());
return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
}
template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
uint32_t Class = Sections[Begin]->Class[Current];
for (size_t I = Begin + 1; I < End; ++I)
if (Class != Sections[I]->Class[Current])
return I;
return End;
}
// Sections in the same equivalence class are contiguous in Sections
// vector. Therefore, Sections vector can be considered as contiguous
// groups of sections, grouped by the class.
//
// This function calls Fn on every group that starts within [Begin, End).
// Note that a group must start in that range but doesn't necessarily
// have to end before End.
template <class ELFT>
void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
std::function<void(size_t, size_t)> Fn) {
if (Begin > 0)
Begin = findBoundary(Begin - 1, End);
while (Begin < End) {
size_t Mid = findBoundary(Begin, Sections.size());
Fn(Begin, Mid);
Begin = Mid;
}
}
// Call Fn on each equivalence class.
template <class ELFT>
void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
// If threading is disabled or the number of sections are
// too small to use threading, call Fn sequentially.
if (!Config->Threads || Sections.size() < 1024) {
forEachClassRange(0, Sections.size(), Fn);
++Cnt;
return;
}
Current = Cnt % 2;
Next = (Cnt + 1) % 2;
// Split sections into 256 shards and call Fn in parallel.
size_t NumShards = 256;
size_t Step = Sections.size() / NumShards;
parallelForEachN(0, NumShards, [&](size_t I) {
size_t End = (I == NumShards - 1) ? Sections.size() : (I + 1) * Step;
forEachClassRange(I * Step, End, Fn);
});
++Cnt;
}
// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
// Collect sections to merge.
for (InputSectionBase *Sec : InputSections)
if (auto *S = dyn_cast<InputSection>(Sec))
if (isEligible(S))
Sections.push_back(S);
// Initially, we use hash values to partition sections.
for (InputSection *S : Sections)
// Set MSB to 1 to avoid collisions with non-hash IDs.
S->Class[0] = getHash<ELFT>(S) | (1 << 31);
// From now on, sections in Sections vector are ordered so that sections
// in the same equivalence class are consecutive in the vector.
std::stable_sort(Sections.begin(), Sections.end(),
[](InputSection *A, InputSection *B) {
return A->Class[0] < B->Class[0];
});
// Compare static contents and assign unique IDs for each static content.
forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
// Split groups by comparing relocations until convergence is obtained.
do {
Repeat = false;
forEachClass(
[&](size_t Begin, size_t End) { segregate(Begin, End, false); });
} while (Repeat);
log("ICF needed " + Twine(Cnt) + " iterations");
// Merge sections by the equivalence class.
forEachClass([&](size_t Begin, size_t End) {
if (End - Begin == 1)
return;
log("selected " + Sections[Begin]->Name);
for (size_t I = Begin + 1; I < End; ++I) {
log(" removed " + Sections[I]->Name);
Sections[Begin]->replace(Sections[I]);
}
});
// Mark ARM Exception Index table sections that refer to folded code
// sections as not live. These sections have an implict dependency
// via the link order dependency.
if (Config->EMachine == EM_ARM)
for (InputSectionBase *Sec : InputSections)
if (auto *S = dyn_cast<InputSection>(Sec))
if (S->Flags & SHF_LINK_ORDER)
S->Live = S->getLinkOrderDep()->Live;
}
// ICF entry point function.
template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
template void elf::doIcf<ELF32LE>();
template void elf::doIcf<ELF32BE>();
template void elf::doIcf<ELF64LE>();
template void elf::doIcf<ELF64BE>();