Files
llvm-project/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp
Ted Kremenek 632e3b7ee2 [analyzer] Make the entries in 'Environment' context-sensitive by making entries map from
(Stmt*,LocationContext*) pairs to SVals instead of Stmt* to SVals.

This is needed to support basic IPA via inlining.  Without this, we cannot tell
if a Stmt* binding is part of the current analysis scope (StackFrameContext) or
part of a parent context.

This change introduces an uglification of the use of getSVal(), and thus takes
two steps forward and one step back.  There are also potential performance implications
of enlarging the Environment.  Both can be addressed going forward by refactoring the
APIs and optimizing the internal representation of Environment.  This patch
mainly introduces the functionality upon when we want to build upon (and clean up).

llvm-svn: 147688
2012-01-06 22:09:28 +00:00

540 lines
15 KiB
C++

//== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SymbolManager, a class that manages symbolic values
// created for use by ExprEngine and related classes.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
void SymExpr::anchor() { }
void SymExpr::dump() const {
dumpToStream(llvm::errs());
}
static void print(raw_ostream &os, BinaryOperator::Opcode Op) {
switch (Op) {
default:
llvm_unreachable("operator printing not implemented");
case BO_Mul: os << '*' ; break;
case BO_Div: os << '/' ; break;
case BO_Rem: os << '%' ; break;
case BO_Add: os << '+' ; break;
case BO_Sub: os << '-' ; break;
case BO_Shl: os << "<<" ; break;
case BO_Shr: os << ">>" ; break;
case BO_LT: os << "<" ; break;
case BO_GT: os << '>' ; break;
case BO_LE: os << "<=" ; break;
case BO_GE: os << ">=" ; break;
case BO_EQ: os << "==" ; break;
case BO_NE: os << "!=" ; break;
case BO_And: os << '&' ; break;
case BO_Xor: os << '^' ; break;
case BO_Or: os << '|' ; break;
}
}
void SymIntExpr::dumpToStream(raw_ostream &os) const {
os << '(';
getLHS()->dumpToStream(os);
os << ") ";
print(os, getOpcode());
os << ' ' << getRHS().getZExtValue();
if (getRHS().isUnsigned()) os << 'U';
}
void IntSymExpr::dumpToStream(raw_ostream &os) const {
os << ' ' << getLHS().getZExtValue();
if (getLHS().isUnsigned()) os << 'U';
print(os, getOpcode());
os << '(';
getRHS()->dumpToStream(os);
os << ") ";
}
void SymSymExpr::dumpToStream(raw_ostream &os) const {
os << '(';
getLHS()->dumpToStream(os);
os << ") ";
os << '(';
getRHS()->dumpToStream(os);
os << ')';
}
void SymbolCast::dumpToStream(raw_ostream &os) const {
os << '(' << ToTy.getAsString() << ") (";
Operand->dumpToStream(os);
os << ')';
}
void SymbolConjured::dumpToStream(raw_ostream &os) const {
os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}';
}
void SymbolDerived::dumpToStream(raw_ostream &os) const {
os << "derived_$" << getSymbolID() << '{'
<< getParentSymbol() << ',' << getRegion() << '}';
}
void SymbolExtent::dumpToStream(raw_ostream &os) const {
os << "extent_$" << getSymbolID() << '{' << getRegion() << '}';
}
void SymbolMetadata::dumpToStream(raw_ostream &os) const {
os << "meta_$" << getSymbolID() << '{'
<< getRegion() << ',' << T.getAsString() << '}';
}
void SymbolData::anchor() { }
void SymbolRegionValue::dumpToStream(raw_ostream &os) const {
os << "reg_$" << getSymbolID() << "<" << R << ">";
}
bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const {
return itr == X.itr;
}
bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const {
return itr != X.itr;
}
SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) {
itr.push_back(SE);
while (!isa<SymbolData>(itr.back())) expand();
}
SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() {
assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
assert(isa<SymbolData>(itr.back()));
itr.pop_back();
if (!itr.empty())
while (!isa<SymbolData>(itr.back())) expand();
return *this;
}
SymbolRef SymExpr::symbol_iterator::operator*() {
assert(!itr.empty() && "attempting to dereference an 'end' iterator");
return cast<SymbolData>(itr.back());
}
void SymExpr::symbol_iterator::expand() {
const SymExpr *SE = itr.back();
itr.pop_back();
switch (SE->getKind()) {
case SymExpr::RegionValueKind:
case SymExpr::ConjuredKind:
case SymExpr::DerivedKind:
case SymExpr::ExtentKind:
case SymExpr::MetadataKind:
return;
case SymExpr::CastSymbolKind:
itr.push_back(cast<SymbolCast>(SE)->getOperand());
return;
case SymExpr::SymIntKind:
itr.push_back(cast<SymIntExpr>(SE)->getLHS());
return;
case SymExpr::IntSymKind:
itr.push_back(cast<IntSymExpr>(SE)->getRHS());
return;
case SymExpr::SymSymKind: {
const SymSymExpr *x = cast<SymSymExpr>(SE);
itr.push_back(x->getLHS());
itr.push_back(x->getRHS());
return;
}
}
llvm_unreachable("unhandled expansion case");
}
const SymbolRegionValue*
SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) {
llvm::FoldingSetNodeID profile;
SymbolRegionValue::Profile(profile, R);
void *InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>();
new (SD) SymbolRegionValue(SymbolCounter, R);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolRegionValue>(SD);
}
const SymbolConjured*
SymbolManager::getConjuredSymbol(const Stmt *E, QualType T, unsigned Count,
const void *SymbolTag) {
llvm::FoldingSetNodeID profile;
SymbolConjured::Profile(profile, E, T, Count, SymbolTag);
void *InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>();
new (SD) SymbolConjured(SymbolCounter, E, T, Count, SymbolTag);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolConjured>(SD);
}
const SymbolDerived*
SymbolManager::getDerivedSymbol(SymbolRef parentSymbol,
const TypedValueRegion *R) {
llvm::FoldingSetNodeID profile;
SymbolDerived::Profile(profile, parentSymbol, R);
void *InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>();
new (SD) SymbolDerived(SymbolCounter, parentSymbol, R);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolDerived>(SD);
}
const SymbolExtent*
SymbolManager::getExtentSymbol(const SubRegion *R) {
llvm::FoldingSetNodeID profile;
SymbolExtent::Profile(profile, R);
void *InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>();
new (SD) SymbolExtent(SymbolCounter, R);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolExtent>(SD);
}
const SymbolMetadata*
SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T,
unsigned Count, const void *SymbolTag) {
llvm::FoldingSetNodeID profile;
SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag);
void *InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>();
new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolMetadata>(SD);
}
const SymbolCast*
SymbolManager::getCastSymbol(const SymExpr *Op,
QualType From, QualType To) {
llvm::FoldingSetNodeID ID;
SymbolCast::Profile(ID, Op, From, To);
void *InsertPos;
SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!data) {
data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>();
new (data) SymbolCast(Op, From, To);
DataSet.InsertNode(data, InsertPos);
}
return cast<SymbolCast>(data);
}
const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs,
BinaryOperator::Opcode op,
const llvm::APSInt& v,
QualType t) {
llvm::FoldingSetNodeID ID;
SymIntExpr::Profile(ID, lhs, op, v, t);
void *InsertPos;
SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!data) {
data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>();
new (data) SymIntExpr(lhs, op, v, t);
DataSet.InsertNode(data, InsertPos);
}
return cast<SymIntExpr>(data);
}
const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs,
BinaryOperator::Opcode op,
const SymExpr *rhs,
QualType t) {
llvm::FoldingSetNodeID ID;
IntSymExpr::Profile(ID, lhs, op, rhs, t);
void *InsertPos;
SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!data) {
data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>();
new (data) IntSymExpr(lhs, op, rhs, t);
DataSet.InsertNode(data, InsertPos);
}
return cast<IntSymExpr>(data);
}
const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs,
BinaryOperator::Opcode op,
const SymExpr *rhs,
QualType t) {
llvm::FoldingSetNodeID ID;
SymSymExpr::Profile(ID, lhs, op, rhs, t);
void *InsertPos;
SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!data) {
data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>();
new (data) SymSymExpr(lhs, op, rhs, t);
DataSet.InsertNode(data, InsertPos);
}
return cast<SymSymExpr>(data);
}
QualType SymbolConjured::getType(ASTContext&) const {
return T;
}
QualType SymbolDerived::getType(ASTContext &Ctx) const {
return R->getValueType();
}
QualType SymbolExtent::getType(ASTContext &Ctx) const {
return Ctx.getSizeType();
}
QualType SymbolMetadata::getType(ASTContext&) const {
return T;
}
QualType SymbolRegionValue::getType(ASTContext &C) const {
return R->getValueType();
}
SymbolManager::~SymbolManager() {
for (SymbolDependTy::const_iterator I = SymbolDependencies.begin(),
E = SymbolDependencies.end(); I != E; ++I) {
delete I->second;
}
}
bool SymbolManager::canSymbolicate(QualType T) {
T = T.getCanonicalType();
if (Loc::isLocType(T))
return true;
if (T->isIntegerType())
return T->isScalarType();
if (T->isRecordType() && !T->isUnionType())
return true;
return false;
}
void SymbolManager::addSymbolDependency(const SymbolRef Primary,
const SymbolRef Dependent) {
SymbolDependTy::iterator I = SymbolDependencies.find(Primary);
SymbolRefSmallVectorTy *dependencies = 0;
if (I == SymbolDependencies.end()) {
dependencies = new SymbolRefSmallVectorTy();
SymbolDependencies[Primary] = dependencies;
} else {
dependencies = I->second;
}
dependencies->push_back(Dependent);
}
const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols(
const SymbolRef Primary) {
SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary);
if (I == SymbolDependencies.end())
return 0;
return I->second;
}
void SymbolReaper::markDependentsLive(SymbolRef sym) {
// Do not mark dependents more then once.
SymbolMapTy::iterator LI = TheLiving.find(sym);
assert(LI != TheLiving.end() && "The primary symbol is not live.");
if (LI->second == HaveMarkedDependents)
return;
LI->second = HaveMarkedDependents;
if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) {
for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(),
E = Deps->end(); I != E; ++I) {
if (TheLiving.find(*I) != TheLiving.end())
continue;
markLive(*I);
}
}
}
void SymbolReaper::markLive(SymbolRef sym) {
TheLiving[sym] = NotProcessed;
TheDead.erase(sym);
markDependentsLive(sym);
}
void SymbolReaper::markLive(const MemRegion *region) {
RegionRoots.insert(region);
}
void SymbolReaper::markInUse(SymbolRef sym) {
if (isa<SymbolMetadata>(sym))
MetadataInUse.insert(sym);
}
bool SymbolReaper::maybeDead(SymbolRef sym) {
if (isLive(sym))
return false;
TheDead.insert(sym);
return true;
}
bool SymbolReaper::isLiveRegion(const MemRegion *MR) {
if (RegionRoots.count(MR))
return true;
MR = MR->getBaseRegion();
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
return isLive(SR->getSymbol());
if (const VarRegion *VR = dyn_cast<VarRegion>(MR))
return isLive(VR, true);
// FIXME: This is a gross over-approximation. What we really need is a way to
// tell if anything still refers to this region. Unlike SymbolicRegions,
// AllocaRegions don't have associated symbols, though, so we don't actually
// have a way to track their liveness.
if (isa<AllocaRegion>(MR))
return true;
if (isa<CXXThisRegion>(MR))
return true;
if (isa<MemSpaceRegion>(MR))
return true;
return false;
}
bool SymbolReaper::isLive(SymbolRef sym) {
if (TheLiving.count(sym)) {
markDependentsLive(sym);
return true;
}
if (const SymbolDerived *derived = dyn_cast<SymbolDerived>(sym)) {
if (isLive(derived->getParentSymbol())) {
markLive(sym);
return true;
}
return false;
}
if (const SymbolExtent *extent = dyn_cast<SymbolExtent>(sym)) {
if (isLiveRegion(extent->getRegion())) {
markLive(sym);
return true;
}
return false;
}
if (const SymbolMetadata *metadata = dyn_cast<SymbolMetadata>(sym)) {
if (MetadataInUse.count(sym)) {
if (isLiveRegion(metadata->getRegion())) {
markLive(sym);
MetadataInUse.erase(sym);
return true;
}
}
return false;
}
// Interogate the symbol. It may derive from an input value to
// the analyzed function/method.
return isa<SymbolRegionValue>(sym);
}
bool
SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const {
if (LCtx != ELCtx) {
// If the reaper's location context is a parent of the expression's
// location context, then the expression value is now "out of scope".
if (LCtx->isParentOf(ELCtx))
return false;
return true;
}
return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal);
}
bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{
const StackFrameContext *VarContext = VR->getStackFrame();
const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame();
if (VarContext == CurrentContext) {
if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl()))
return true;
if (!includeStoreBindings)
return false;
unsigned &cachedQuery =
const_cast<SymbolReaper*>(this)->includedRegionCache[VR];
if (cachedQuery) {
return cachedQuery == 1;
}
// Query the store to see if the region occurs in any live bindings.
if (Store store = reapedStore.getStore()) {
bool hasRegion =
reapedStore.getStoreManager().includedInBindings(store, VR);
cachedQuery = hasRegion ? 1 : 2;
return hasRegion;
}
return false;
}
return VarContext->isParentOf(CurrentContext);
}
SymbolVisitor::~SymbolVisitor() {}