Files
Kristof Beyls 0928368f62 [libc] Provide Arm Optimized Routines for the LLVM libc project.
This adds the Arm Optimized Routines (see
https://github.com/ARM-software/optimized-routines) source code under the
the LLVM license. The version of the code provided in this patch is v20.02
of the Arm Optimized Routines project.

This entire contribution is being committed as is even though it does
not currently fit the LLVM libc model and does not follow the LLVM
coding style. In the near future, implementations from this patch will be
moved over to their right place in the LLVM-libc tree. This will be done
over many small patches, all of which will go through the normal LLVM code
review process. See this libc-dev post for the plan:
http://lists.llvm.org/pipermail/libc-dev/2020-March/000044.html

Differential revision of the original upload: https://reviews.llvm.org/D75355
2020-03-16 12:19:31 -07:00

164 lines
4.6 KiB
C

/*
* Double-precision log(x) function.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include <float.h>
#include <math.h>
#include <stdint.h>
#include "math_config.h"
#define T __log_data.tab
#define T2 __log_data.tab2
#define B __log_data.poly1
#define A __log_data.poly
#define Ln2hi __log_data.ln2hi
#define Ln2lo __log_data.ln2lo
#define N (1 << LOG_TABLE_BITS)
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t
top16 (double x)
{
return asuint64 (x) >> 48;
}
double
log (double x)
{
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
uint64_t ix, iz, tmp;
uint32_t top;
int k, i;
ix = asuint64 (x);
top = top16 (x);
#if LOG_POLY1_ORDER == 10 || LOG_POLY1_ORDER == 11
# define LO asuint64 (1.0 - 0x1p-5)
# define HI asuint64 (1.0 + 0x1.1p-5)
#elif LOG_POLY1_ORDER == 12
# define LO asuint64 (1.0 - 0x1p-4)
# define HI asuint64 (1.0 + 0x1.09p-4)
#endif
if (unlikely (ix - LO < HI - LO))
{
/* Handle close to 1.0 inputs separately. */
/* Fix sign of zero with downward rounding when x==1. */
if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
return 0;
r = x - 1.0;
r2 = r * r;
r3 = r * r2;
#if LOG_POLY1_ORDER == 10
/* Worst-case error is around 0.516 ULP. */
y = r3 * (B[1] + r * B[2] + r2 * B[3]
+ r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8])));
w = B[0] * r2; /* B[0] == -0.5. */
hi = r + w;
y += r - hi + w;
y += hi;
#elif LOG_POLY1_ORDER == 11
/* Worst-case error is around 0.516 ULP. */
y = r3 * (B[1] + r * B[2]
+ r2 * (B[3] + r * B[4] + r2 * B[5]
+ r3 * (B[6] + r * B[7] + r2 * B[8] + r3 * B[9])));
w = B[0] * r2; /* B[0] == -0.5. */
hi = r + w;
y += r - hi + w;
y += hi;
#elif LOG_POLY1_ORDER == 12
y = r3 * (B[1] + r * B[2] + r2 * B[3]
+ r3 * (B[4] + r * B[5] + r2 * B[6]
+ r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
# if N <= 64
/* Worst-case error is around 0.532 ULP. */
w = B[0] * r2; /* B[0] == -0.5. */
hi = r + w;
y += r - hi + w;
y += hi;
# else
/* Worst-case error is around 0.507 ULP. */
w = r * 0x1p27;
double_t rhi = r + w - w;
double_t rlo = r - rhi;
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
hi = r + w;
lo = r - hi + w;
lo += B[0] * rlo * (rhi + r);
y += lo;
y += hi;
# endif
#endif
return eval_as_double (y);
}
if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
{
/* x < 0x1p-1022 or inf or nan. */
if (ix * 2 == 0)
return __math_divzero (1);
if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */
return x;
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
return __math_invalid (x);
/* x is subnormal, normalize it. */
ix = asuint64 (x * 0x1p52);
ix -= 52ULL << 52;
}
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
k = (int64_t) tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
z = asdouble (iz);
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
/* r ~= z/c - 1, |r| < 1/(2*N). */
#if HAVE_FAST_FMA
/* rounding error: 0x1p-55/N. */
r = fma (z, invc, -1.0);
#else
/* rounding error: 0x1p-55/N + 0x1p-66. */
r = (z - T2[i].chi - T2[i].clo) * invc;
#endif
kd = (double_t) k;
/* hi + lo = r + log(c) + k*Ln2. */
w = kd * Ln2hi + logc;
hi = w + r;
lo = w - hi + r + kd * Ln2lo;
/* log(x) = lo + (log1p(r) - r) + hi. */
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
/* Worst case error if |y| > 0x1p-5:
0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
Worst case error if |y| > 0x1p-4:
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
#if LOG_POLY_ORDER == 6
y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
#elif LOG_POLY_ORDER == 7
y = lo
+ r2 * (A[0] + r * A[1] + r2 * (A[2] + r * A[3])
+ r2 * r2 * (A[4] + r * A[5]))
+ hi;
#endif
return eval_as_double (y);
}
#if USE_GLIBC_ABI
strong_alias (log, __log_finite)
hidden_alias (log, __ieee754_log)
# if LDBL_MANT_DIG == 53
long double logl (long double x) { return log (x); }
# endif
#endif