Compare commits

...

1 Commits

Author SHA1 Message Date
Shilei Tian
68b5d41e81 [SCEV] Infer loop max trip count from memory accesses
Data references in a loop is assumed to not access elements over the statically
allocated size. We can therefore infer a loop max trip count from this undefined
behavior.

This patch is refined from the orignal one (https://reviews.llvm.org/D155049)
authored by @Peakulorain.
2024-03-10 19:20:02 -04:00
4 changed files with 560 additions and 6 deletions

View File

@@ -1154,6 +1154,10 @@ public:
bool ExitIfTrue, bool ControlsOnlyExit,
bool AllowPredicates = false);
/// Compute the number of times the body of the specific loop will execute via
/// the memory access inside the loop body.
ExitLimit computeExitLimitFromMemAccess(const Loop *L);
/// A predicate is said to be monotonically increasing if may go from being
/// false to being true as the loop iterates, but never the other way
/// around. A predicate is said to be monotonically decreasing if may go
@@ -1805,6 +1809,9 @@ private:
Value *ExitCond, bool ExitIfTrue,
bool ControlsOnlyExit,
bool AllowPredicates);
ExitLimit computeExitLimitFromMemAccessCached(ExitLimitCacheTy &Cache,
const Loop *L);
ExitLimit computeExitLimitFromMemAccessImpl(const Loop *L);
std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
bool ControlsOnlyExit, bool AllowPredicates);

View File

@@ -249,6 +249,10 @@ static cl::opt<bool> UseContextForNoWrapFlagInference(
cl::desc("Infer nuw/nsw flags using context where suitable"),
cl::init(true));
static cl::opt<bool> UseMemoryAccessUBForBEInference(
"scalar-evolution-infer-max-trip-count-from-memory-access", cl::Hidden,
cl::desc("Infer loop max trip count from memory access"), cl::init(false));
//===----------------------------------------------------------------------===//
// SCEV class definitions
//===----------------------------------------------------------------------===//
@@ -8260,6 +8264,210 @@ ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
return getSmallConstantTripMultiple(L, ExitCount);
}
/// Collect all load/store instructions that must be executed in every iteration
/// of loop \p L .
static void
collectExecLoadStoreInsideLoop(const Loop *L, DominatorTree &DT,
SmallVector<Instruction *, 4> &MemInsts) {
// It is difficult to tell if the load/store instruction is executed on every
// iteration inside an irregular loop.
if (!L->isLoopSimplifyForm() || !L->isInnermost())
return;
const BasicBlock *LoopLatch = L->getLoopLatch();
assert(LoopLatch && "normal form loop doesn't have a latch");
assert(L->getExitingBlock() == LoopLatch);
// We will not continue if sanitizer is enabled.
const Function *F = LoopLatch->getParent();
if (F->hasFnAttribute(Attribute::SanitizeAddress) ||
F->hasFnAttribute(Attribute::SanitizeThread) ||
F->hasFnAttribute(Attribute::SanitizeMemory) ||
F->hasFnAttribute(Attribute::SanitizeHWAddress) ||
F->hasFnAttribute(Attribute::SanitizeMemTag))
return;
for (auto *BB : L->getBlocks()) {
// We need to make sure that max execution time of MemAccessBB in loop
// represents latch max excution time. The BB below should be skipped:
// Entry
// │
// ┌─────▼─────┐
// │Loop Header◄─────┐
// └──┬──────┬─┘ │
// │ │ │
// ┌────────▼──┐ ┌─▼─────┐ │
// │MemAccessBB│ │OtherBB│ │
// └────────┬──┘ └─┬─────┘ │
// │ │ │
// ┌─▼──────▼─┐ │
// │Loop Latch├─────┘
// └────┬─────┘
// ▼
// Exit
if (!DT.dominates(BB, LoopLatch))
continue;
for (Instruction &I : *BB) {
if (isa<LoadInst>(&I) || isa<StoreInst>(&I))
MemInsts.push_back(&I);
}
}
}
/// Return a SCEV representing the memory size of pointer \p V .
static const SCEV *getCertainSizeOfMem(const SCEV *V, Type *RTy,
const DataLayout &DL,
const TargetLibraryInfo &TLI,
ScalarEvolution *SE) {
const SCEVUnknown *PtrBase = dyn_cast<SCEVUnknown>(V);
if (!PtrBase)
return nullptr;
Value *Ptr = PtrBase->getValue();
uint64_t Size = 0;
if (!llvm::getObjectSize(Ptr, Size, DL, &TLI))
return nullptr;
return SE->getConstant(RTy, Size);
}
/// Get the range of given index represented by \p AddRec.
static const SCEV *getIndexRange(const SCEVAddRecExpr *AddRec,
ScalarEvolution *SE) {
const SCEV *Range = SE->getConstant(SE->getUnsignedRangeMax(AddRec) -
SE->getUnsignedRangeMin(AddRec));
const SCEV *Step = AddRec->getStepRecurrence(*SE);
if (SE->isKnownNegative(Step))
Step = SE->getNegativeSCEV(Step);
return SE->getUDivCeilSCEV(Range, Step);
}
/// Get the underlying SCEVAddExpr from a cast expression if possible.
const SCEV *peelCastExpr(const SCEVCastExpr *S, ScalarEvolution *SE) {
const SCEV *Op = S->getOperand();
if (isa<SCEVCouldNotCompute>(Op))
return Op;
if (isa<SCEVAddExpr>(Op))
return Op;
if (isa<SCEVCastExpr>(Op))
return peelCastExpr(cast<SCEVCastExpr>(Op), SE);
return SE->getCouldNotCompute();
}
static Value *peelExt(Value *V) {
if (isa<ZExtInst>(V) || isa<SExtInst>(V))
return peelExt(cast<Instruction>(V)->getOperand(0));
return V;
}
static bool isIndexInductionVariable(PHINode *InductionVar, Value *Index) {
if (InductionVar == Index)
return true;
if (peelExt(Index) == InductionVar)
return true;
return false;
}
/// Check whether the index can wrap and if we can still infer max trip count
/// given the max trip count inferred from memory access.
static const SCEV *checkIndexRange(Value *Ptr, PHINode *InductionVar,
ScalarEvolution *SE,
const SCEVConstant *MaxExecCount) {
SmallVector<const SCEV *> InferCountColl;
auto *PtrGEP = dyn_cast<GetElementPtrInst>(Ptr);
if (!PtrGEP)
return SE->getCouldNotCompute();
for (Value *Index : PtrGEP->indices()) {
Value *V = Index;
if (!isIndexInductionVariable(InductionVar, Index))
continue;
if (isa<ZExtInst>(V) || isa<SExtInst>(V))
V = cast<Instruction>(Index)->getOperand(0);
auto *SCEV = SE->getSCEV(V);
if (isa<SCEVCouldNotCompute>(SCEV))
return SE->getCouldNotCompute();
if (isa<SCEVCastExpr>(SCEV)) {
SCEV = peelCastExpr(cast<SCEVCastExpr>(SCEV), SE);
if (isa<SCEVCouldNotCompute>(SCEV))
return SE->getCouldNotCompute();
}
auto *AddRec = dyn_cast<SCEVAddRecExpr>(SCEV);
if (!AddRec)
return SE->getCouldNotCompute();
auto *IndexRange = getIndexRange(AddRec, SE);
auto *IndexRangeC = dyn_cast<SCEVConstant>(IndexRange);
if (!IndexRangeC)
return SE->getCouldNotCompute();
InferCountColl.push_back(IndexRange);
break;
}
if (InferCountColl.empty())
return SE->getCouldNotCompute();
InferCountColl.push_back(MaxExecCount);
return SE->getUMinFromMismatchedTypes(InferCountColl);
}
ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromMemAccessImpl(const Loop *L) {
SmallVector<Instruction *, 4> MemInsts;
collectExecLoadStoreInsideLoop(L, DT, MemInsts);
SmallVector<const SCEV *> InferCountColl;
const DataLayout &DL = getDataLayout();
for (Instruction *I : MemInsts) {
Value *Ptr = getLoadStorePointerOperand(I);
assert(Ptr && "empty pointer operand");
auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(Ptr));
if (!AddRec || !AddRec->isAffine())
continue;
const SCEV *PtrBase = getPointerBase(AddRec);
const SCEV *Step = AddRec->getStepRecurrence(*this);
const SCEV *MemSize =
getCertainSizeOfMem(PtrBase, Step->getType(), DL, TLI, this);
if (!MemSize)
continue;
if (isKnownNegative(Step))
Step = getNegativeSCEV(Step);
// Now we can infer a max execution time by MemLength/StepLength.
auto *MaxExecCount = dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
if (!MaxExecCount || MaxExecCount->getAPInt().getActiveBits() > 32)
continue;
auto *Res = checkIndexRange(Ptr, L->getInductionVariable(*this), this,
MaxExecCount);
if (isa<SCEVCouldNotCompute>(Res))
continue;
InferCountColl.push_back(Res);
}
if (InferCountColl.empty())
return getCouldNotCompute();
const SCEV *Count = getUMinFromMismatchedTypes(InferCountColl);
return {getCouldNotCompute(), Count, Count, /*MaxOrZero=*/false};
}
ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromMemAccessCached(ExitLimitCacheTy &Cache,
const Loop *L) {
// We don't really need them but the cache does.
constexpr Value *ExitCond = nullptr;
constexpr const bool ExitIfTrue = true;
constexpr const bool ControlsOnlyExit = true;
constexpr const bool AllowPredicates = true;
if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
AllowPredicates))
return *MaybeEL;
ExitLimit EL = computeExitLimitFromMemAccessImpl(L);
Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
return EL;
}
const SCEV *ScalarEvolution::getExitCount(const Loop *L,
const BasicBlock *ExitingBlock,
ExitCountKind Kind) {
@@ -8842,6 +9050,16 @@ ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
if (!Latch || !DT.dominates(ExitingBlock, Latch))
return getCouldNotCompute();
// FIXME: To make the case more typical, we only analyze loops that have one
// exiting block and the block must be the latch. It is easier to capture
// loops with memory access that will be executed in every iteration.
const SCEV *PotentiallyBetterConstantMax = getCouldNotCompute();
if (UseMemoryAccessUBForBEInference && Latch == L->getExitingBlock()) {
assert(Latch == ExitingBlock);
auto EL = computeExitLimitFromMemAccess(L);
PotentiallyBetterConstantMax = EL.ConstantMaxNotTaken;
}
bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Instruction *Term = ExitingBlock->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
@@ -8850,9 +9068,14 @@ ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
"It should have one successor in loop and one exit block!");
// Proceed to the next level to examine the exit condition expression.
return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
/*ControlsOnlyExit=*/IsOnlyExit,
AllowPredicates);
ExitLimit EL = computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
/*ControlsOnlyExit=*/IsOnlyExit,
AllowPredicates);
if (!isa<SCEVCouldNotCompute>(EL.ConstantMaxNotTaken) &&
!isa<SCEVCouldNotCompute>(PotentiallyBetterConstantMax))
EL.ConstantMaxNotTaken = getUMinFromMismatchedTypes(
EL.ConstantMaxNotTaken, PotentiallyBetterConstantMax);
return EL;
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
@@ -8865,9 +9088,14 @@ ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
Exit = SBB;
}
assert(Exit && "Exiting block must have at least one exit");
return computeExitLimitFromSingleExitSwitch(
L, SI, Exit,
/*ControlsOnlyExit=*/IsOnlyExit);
ExitLimit EL =
computeExitLimitFromSingleExitSwitch(L, SI, Exit,
/*ControlsOnlyExit=*/IsOnlyExit);
if (!isa<SCEVCouldNotCompute>(EL.ConstantMaxNotTaken) &&
!isa<SCEVCouldNotCompute>(PotentiallyBetterConstantMax))
EL.ConstantMaxNotTaken = getUMinFromMismatchedTypes(
EL.ConstantMaxNotTaken, PotentiallyBetterConstantMax);
return EL;
}
return getCouldNotCompute();
@@ -8881,6 +9109,13 @@ ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
ControlsOnlyExit, AllowPredicates);
}
ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromMemAccess(const Loop *L) {
ScalarEvolution::ExitLimitCacheTy Cache(L, /* ExitIfTrue */ true,
/* AllowPredicates */ true);
return computeExitLimitFromMemAccessCached(Cache, L);
}
std::optional<ScalarEvolution::ExitLimit>
ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
bool ExitIfTrue, bool ControlsOnlyExit,
@@ -13579,6 +13814,17 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
OS << ": ";
OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
}
if (UseMemoryAccessUBForBEInference) {
unsigned SmallMaxTrip = SE->getSmallConstantMaxTripCount(L);
OS << "Loop ";
L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
if (SmallMaxTrip)
OS << "Small constant max trip is " << SmallMaxTrip << "\n";
else
OS << "Small constant max trip couldn't be computed.\n";
}
}
namespace llvm {

View File

@@ -0,0 +1,110 @@
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" -scalar-evolution-classify-expressions=0 -scalar-evolution-infer-max-trip-count-from-memory-access 2>&1 | FileCheck %s
define void @ComputeMaxTripCountFromArrayIdxWrap(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromArrayIdxWrap'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromArrayIdxWrap
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 255
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
; CHECK-NEXT: Loop %for.body: Small constant max trip is 256
;
entry:
%a = alloca [256 x i32], align 4
%cmp4 = icmp sgt i32 %len, 0
br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%iv = phi i8 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%idxprom = zext i8 %iv to i64
%arrayidx = getelementptr inbounds [256 x i32], [256 x i32]* %a, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx, align 4
%inc = add nuw i8 %iv, 1
%inc_zext = zext i8 %inc to i32
%cmp = icmp slt i32 %inc_zext, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}
define void @ComputeMaxTripCountFromArrayIdxWrap2(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromArrayIdxWrap2'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromArrayIdxWrap2
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 127
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
; CHECK-NEXT: Loop %for.body: Small constant max trip is 128
;
entry:
%a = alloca [127 x i32], align 4
%cmp4 = icmp sgt i32 %len, 0
br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%iv = phi i8 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%idxprom = zext i8 %iv to i64
%arrayidx = getelementptr inbounds [127 x i32], [127 x i32]* %a, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx, align 4
%inc = add nuw i8 %iv, 1
%inc_zext = zext i8 %inc to i32
%cmp = icmp slt i32 %inc_zext, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}
define void @ComputeMaxTripCountFromArrayIdxWrap3(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromArrayIdxWrap3'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromArrayIdxWrap3
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 20
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
; CHECK-NEXT: Loop %for.body: Small constant max trip is 21
;
entry:
%a = alloca [20 x i32], align 4
%cmp4 = icmp sgt i32 %len, 0
br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%iv = phi i8 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%idxprom = zext i8 %iv to i64
%arrayidx = getelementptr inbounds [20 x i32], [20 x i32]* %a, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx, align 4
%inc = add nuw nsw i8 %iv, 1
%inc_zext = zext i8 %inc to i32
%cmp = icmp slt i32 %inc_zext, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}

View File

@@ -0,0 +1,191 @@
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" -scalar-evolution-classify-expressions=0 -scalar-evolution-infer-max-trip-count-from-memory-access 2>&1 | FileCheck %s
define void @ComputeMaxTripCountFromArrayNormal(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromArrayNormal'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromArrayNormal
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 7
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
; CHECK-NEXT: Loop %for.body: Small constant max trip is 8
;
entry:
%a = alloca [7 x i32], align 4
%cmp4 = icmp sgt i32 %len, 0
br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%iv = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%idxprom = zext i32 %iv to i64
%arrayidx = getelementptr inbounds [7 x i32], [7 x i32]* %a, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx, align 4
%inc = add nuw nsw i32 %iv, 1
%cmp = icmp slt i32 %inc, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}
define void @ComputeMaxTripCountFromZeroArray(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromZeroArray'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromZeroArray
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 0
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
; CHECK-NEXT: Loop %for.body: Small constant max trip is 1
;
entry:
%a = alloca [0 x i32], align 4
%cmp4 = icmp sgt i32 %len, 0
br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%iv = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%idxprom = zext i32 %iv to i64
%arrayidx = getelementptr inbounds [0 x i32], [0 x i32]* %a, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx, align 4
%inc = add nuw nsw i32 %iv, 1
%cmp = icmp slt i32 %inc, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}
define void @ComputeMaxTripCountFromExtremArray(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromExtremArray'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromExtremArray
; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 2147483646
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %len)
; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.body: Trip multiple is 1
; CHECK-NEXT: Loop %for.body: Small constant max trip is 2147483647
;
entry:
%a = alloca [4294967295 x i1], align 4
%cmp4 = icmp sgt i32 %len, 0
br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%iv = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%idxprom = zext i32 %iv to i64
%arrayidx = getelementptr inbounds [4294967295 x i1], [4294967295 x i1]* %a, i64 0, i64 %idxprom
store i1 0, i1* %arrayidx, align 4
%inc = add nuw nsw i32 %iv, 1
%cmp = icmp slt i32 %inc, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit
}
define void @ComputeMaxTripCountFromArrayInBranch(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromArrayInBranch'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromArrayInBranch
; CHECK-NEXT: Loop %for.cond: backedge-taken count is (0 smax %len)
; CHECK-NEXT: Loop %for.cond: constant max backedge-taken count is 2147483647
; CHECK-NEXT: Loop %for.cond: symbolic max backedge-taken count is (0 smax %len)
; CHECK-NEXT: Loop %for.cond: Predicated backedge-taken count is (0 smax %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.cond: Trip multiple is 1
; CHECK-NEXT: Loop %for.cond: Small constant max trip is 2147483648
;
entry:
%a = alloca [8 x i32], align 4
br label %for.cond
for.cond:
%iv = phi i32 [ %inc, %for.inc ], [ 0, %entry ]
%cmp = icmp slt i32 %iv, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup
for.cond.cleanup:
br label %for.end
for.body:
%cmp1 = icmp slt i32 %iv, 8
br i1 %cmp1, label %if.then, label %if.end
if.then:
%idxprom = sext i32 %iv to i64
%arrayidx = getelementptr inbounds [8 x i32], [8 x i32]* %a, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx, align 4
br label %if.end
if.end:
br label %for.inc
for.inc:
%inc = add nsw i32 %iv, 1
br label %for.cond
for.end:
ret void
}
define void @ComputeMaxTripCountFromMultiDimArray(i32 signext %len) {
; CHECK-LABEL: 'ComputeMaxTripCountFromMultiDimArray'
; CHECK-NEXT: Determining loop execution counts for: @ComputeMaxTripCountFromMultiDimArray
; CHECK-NEXT: Loop %for.cond: backedge-taken count is (0 smax %len)
; CHECK-NEXT: Loop %for.cond: constant max backedge-taken count is 2147483647
; CHECK-NEXT: Loop %for.cond: symbolic max backedge-taken count is (0 smax %len)
; CHECK-NEXT: Loop %for.cond: Predicated backedge-taken count is (0 smax %len)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: Loop %for.cond: Trip multiple is 1
; CHECK-NEXT: Loop %for.cond: Small constant max trip is 2147483648
;
entry:
%a = alloca [3 x [5 x i32]], align 4
br label %for.cond
for.cond:
%iv = phi i32 [ %inc, %for.inc ], [ 0, %entry ]
%cmp = icmp slt i32 %iv, %len
br i1 %cmp, label %for.body, label %for.cond.cleanup
for.cond.cleanup:
br label %for.end
for.body:
%arrayidx = getelementptr inbounds [3 x [5 x i32]], [3 x [5 x i32]]* %a, i64 0, i64 3
%idxprom = sext i32 %iv to i64
%arrayidx1 = getelementptr inbounds [5 x i32], [5 x i32]* %arrayidx, i64 0, i64 %idxprom
store i32 0, i32* %arrayidx1, align 4
br label %for.inc
for.inc:
%inc = add nsw i32 %iv, 1
br label %for.cond
for.end:
ret void
}