Compare commits

...

21 Commits

Author SHA1 Message Date
Tanya Lattner
58b88bd03f Merge release notes from mainline.
llvm-svn: 42386
2007-09-27 04:52:22 +00:00
Tanya Lattner
0f4473a782 Merge from mainline for PR1693.
llvm-svn: 42201
2007-09-21 17:52:24 +00:00
Tanya Lattner
53b947dca9 Merge into release for PR1690.
llvm-svn: 42200
2007-09-21 17:50:28 +00:00
Tanya Lattner
ad20748b55 Remove loop index split test cases for release.
llvm-svn: 42195
2007-09-21 17:41:37 +00:00
Evan Cheng
55c4ece2d6 Merge -r42152:42153 svn/llvm-project/llvm/trunk
llvm-svn: 42154
2007-09-19 22:07:00 +00:00
Tanya Lattner
df68032d8e Merge from mainline.
llvm-svn: 42085
2007-09-18 06:22:01 +00:00
Tanya Lattner
97f6d583c4 Merge from mainline.
llvm-svn: 42083
2007-09-18 06:11:27 +00:00
Tanya Lattner
90e8d3d40f Merge from mainline.
llvm-svn: 42082
2007-09-18 06:08:56 +00:00
Tanya Lattner
a7ebb6acd0 Merge from mainline: Fix PR1666, SPASS with the CBE and 254.gap with the CBE.
llvm-svn: 42081
2007-09-18 06:05:51 +00:00
Tanya Lattner
eb9b0330a1 Merge from mainline because Owen said so.
llvm-svn: 42080
2007-09-18 05:28:53 +00:00
Tanya Lattner
9641951f9c Regenerated configure script to fix help strings.
llvm-svn: 42065
2007-09-17 21:37:52 +00:00
Tanya Lattner
23a93dc404 Fix incorrect default values in help string.
llvm-svn: 42064
2007-09-17 21:36:59 +00:00
Tanya Lattner
eb100b667d Spell things correctly.
llvm-svn: 42053
2007-09-17 20:37:09 +00:00
Tanya Lattner
a4fce9bd7a Disable LoopIndexSplitting for 2.1
llvm-svn: 42052
2007-09-17 20:36:17 +00:00
Tanya Lattner
d042361a6e Merge from mainline to fix make check error on x86.
llvm-svn: 41978
2007-09-15 04:47:06 +00:00
Tanya Lattner
03069ea1d8 Merge from mainline.
llvm-svn: 41952
2007-09-14 05:08:12 +00:00
Tanya Lattner
5a2ed42a74 Merge from mainline.
llvm-svn: 41951
2007-09-14 03:43:40 +00:00
Tanya Lattner
adef84650d Merge from mainline for PR1639
llvm-svn: 41946
2007-09-14 01:49:48 +00:00
Tanya Lattner
34425ff239 Merge from mainline for PR1652.
llvm-svn: 41945
2007-09-14 01:41:09 +00:00
Tanya Lattner
0f7f44c3b5 Set version number
llvm-svn: 41943
2007-09-14 01:26:42 +00:00
Tanya Lattner
7eb310a899 Creating 2.1 release branch.
llvm-svn: 41920
2007-09-13 04:38:30 +00:00
352 changed files with 2040 additions and 54260 deletions

View File

@@ -1,800 +0,0 @@
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
// Destroy the object, but don't call delete. These are malloc'd.
FT->~FunctionTypeProto();
free(FT);
} else {
delete Types.back();
}
Types.pop_back();
}
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumVector = 0, NumComplex = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<ReferenceType>(T))
++NumReference;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
else if (TagType *TT = dyn_cast<TagType>(T)) {
++NumTagged;
switch (TT->getDecl()->getKind()) {
default: assert(0 && "Unknown tagged type!");
case Decl::Struct: ++NumTagStruct; break;
case Decl::Union: ++NumTagUnion; break;
case Decl::Class: ++NumTagClass; break;
case Decl::Enum: ++NumTagEnum; break;
}
} else {
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d reference types\n", NumReference);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned(SourceLocation()))
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T, SourceLocation L) {
T = T.getCanonicalType();
uint64_t Size;
unsigned Align;
switch (T->getTypeClass()) {
case Type::TypeName: assert(0 && "Not a canonical type!");
case Type::FunctionNoProto:
case Type::FunctionProto:
default:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
ConstantArrayType *CAT = cast<ConstantArrayType>(T);
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(CAT->getElementType(), L);
Size = EltInfo.first*CAT->getSize().getZExtValue();
Align = EltInfo.second;
break;
}
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType(), L);
Size = EltInfo.first*cast<VectorType>(T)->getNumElements();
// FIXME: Vector alignment is not the alignment of its elements.
Align = EltInfo.second;
break;
}
case Type::Builtin: {
// FIXME: need to use TargetInfo to derive the target specific sizes. This
// implementation will suffice for play with vector support.
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool: Target.getBoolInfo(Size, Align, L); break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar: Target.getCharInfo(Size, Align, L); break;
case BuiltinType::UShort:
case BuiltinType::Short: Target.getShortInfo(Size, Align, L); break;
case BuiltinType::UInt:
case BuiltinType::Int: Target.getIntInfo(Size, Align, L); break;
case BuiltinType::ULong:
case BuiltinType::Long: Target.getLongInfo(Size, Align, L); break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong: Target.getLongLongInfo(Size, Align, L); break;
case BuiltinType::Float: Target.getFloatInfo(Size, Align, L); break;
case BuiltinType::Double: Target.getDoubleInfo(Size, Align, L); break;
case BuiltinType::LongDouble: Target.getLongDoubleInfo(Size, Align,L);break;
}
break;
}
case Type::Pointer: Target.getPointerInfo(Size, Align, L); break;
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout!
return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L);
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType(), L);
Size = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::Tagged:
TagType *TT = cast<TagType>(T);
if (RecordType *RT = dyn_cast<RecordType>(TT)) {
const RecordLayout &Layout = getRecordLayout(RT->getDecl(), L);
Size = Layout.getSize();
Align = Layout.getAlignment();
} else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) {
return getTypeInfo(ED->getIntegerType(), L);
} else {
assert(0 && "Unimplemented type sizes!");
}
break;
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Size, Align);
}
/// getRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const RecordLayout &ASTContext::getRecordLayout(const RecordDecl *D,
SourceLocation L) {
assert(D->isDefinition() && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const RecordLayout *&Entry = RecordLayoutInfo[D];
if (Entry) return *Entry;
// Allocate and assign into RecordLayoutInfo here. The "Entry" reference can
// be invalidated (dangle) if the RecordLayoutInfo hashtable is inserted into.
RecordLayout *NewEntry = new RecordLayout();
Entry = NewEntry;
uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
uint64_t RecordSize = 0;
unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits.
if (D->getKind() != Decl::Union) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L);
uint64_t FieldSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
// Round up the current record size to the field's alignment boundary.
RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
// Place this field at the current location.
FieldOffsets[i] = RecordSize;
// Reserve space for this field.
RecordSize += FieldSize;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
} else {
// Union layout just puts each member at the start of the record.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L);
uint64_t FieldSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
// Round up the current record size to the field's alignment boundary.
RecordSize = std::max(RecordSize, FieldSize);
// Place this field at the start of the record.
FieldOffsets[i] = 0;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
}
NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getPointerType(T.getCanonicalType());
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getReferenceType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, EltTy, ArySize);
void *InsertPos = 0;
if (ConstantArrayType *ATP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
ASM, EltTypeQuals);
ArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
// Since we don't unique expressions, it isn't possible to unique VLA's.
ArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
Types.push_back(New);
return QualType(New, 0);
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getOCUVectorType - Return the unique reference to an OCU vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy->isCanonical()) {
Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeProtos.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
unsigned NumArgs, bool isVariadic) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
QualType Canonical;
if (!isCanonical) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
Canonical = getFunctionType(ResultTy.getCanonicalType(),
&CanonicalArgs[0], NumArgs,
isVariadic);
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
NumArgs*sizeof(QualType));
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
Decl->TypeForDecl = new TypedefType(Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjcInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjcInterfaceType(ObjcInterfaceDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new ObjcInterfaceType(Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExpr AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
QualType Canonical = tofExpr->getType().getCanonicalType();
TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = tofType.getCanonicalType();
TypeOfType *tot = new TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
// The decl stores the type cache.
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new TagType(Decl, QualType());
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getSizeType() const {
// On Darwin, size_t is defined as a "long unsigned int".
// FIXME: should derive from "Target".
return UnsignedLongTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
// On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
// FIXME: should derive from "Target".
return IntTy;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum.
static int getIntegerRank(QualType t) {
if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
return 4;
}
const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType());
switch (BT->getKind()) {
default:
assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2;
case BuiltinType::Short:
case BuiltinType::UShort:
return 3;
case BuiltinType::Int:
case BuiltinType::UInt:
return 4;
case BuiltinType::Long:
case BuiltinType::ULong:
return 5;
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6;
}
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static int getFloatingRank(QualType T) {
T = T.getCanonicalType();
if (ComplexType *CT = dyn_cast<ComplexType>(T))
return getFloatingRank(CT->getElementType());
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "getFloatingPointRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(
QualType typeSize, QualType typeDomain) const {
if (typeDomain->isComplexType()) {
switch (getFloatingRank(typeSize)) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
if (typeDomain->isRealFloatingType()) {
switch (getFloatingRank(typeSize)) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
}
assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain");
}
/// compareFloatingType - Handles 3 different combos:
/// float/float, float/complex, complex/complex.
/// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1.
int ASTContext::compareFloatingType(QualType lt, QualType rt) {
if (getFloatingRank(lt) == getFloatingRank(rt))
return 0;
if (getFloatingRank(lt) > getFloatingRank(rt))
return 1;
return -1;
}
// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
if (lhs == rhs) return lhs;
bool t1Unsigned = lhs->isUnsignedIntegerType();
bool t2Unsigned = rhs->isUnsignedIntegerType();
if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
// We have two integer types with differing signs
QualType unsignedType = t1Unsigned ? lhs : rhs;
QualType signedType = t1Unsigned ? rhs : lhs;
if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
return unsignedType;
else {
// FIXME: Need to check if the signed type can represent all values of the
// unsigned type. If it can, then the result is the signed type.
// If it can't, then the result is the unsigned version of the signed type.
// Should probably add a helper that returns a signed integer type from
// an unsigned (and vice versa). C99 6.3.1.8.
return signedType;
}
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(),
&Idents.get("__builtin_CFString"),
0);
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
// int flags;
FieldTypes[1] = IntTy;
// const char *str;
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
// long length;
FieldTypes[3] = LongTy;
// Create fields
FieldDecl *FieldDecls[4];
for (unsigned i = 0; i < 4; ++i)
FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i], 0);
CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
}
return getTagDeclType(CFConstantStringTypeDecl);
}

View File

@@ -1,172 +0,0 @@
//===--- Builtins.cpp - Builtin function implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements various things for builtin functions.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Builtins.h"
#include "clang/AST/ASTContext.h"
#include "clang/Lex/IdentifierTable.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
static const Builtin::Info BuiltinInfo[] = {
{ "not a builtin function", 0, 0 },
#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS },
#include "clang/AST/Builtins.def"
};
const Builtin::Info &Builtin::Context::GetRecord(unsigned ID) const {
if (ID < Builtin::FirstTSBuiltin)
return BuiltinInfo[ID];
assert(ID - Builtin::FirstTSBuiltin < NumTSRecords && "Invalid builtin ID!");
return TSRecords[ID - Builtin::FirstTSBuiltin];
}
/// InitializeBuiltins - Mark the identifiers for all the builtins with their
/// appropriate builtin ID # and mark any non-portable builtin identifiers as
/// such.
void Builtin::Context::InitializeBuiltins(IdentifierTable &Table,
const TargetInfo &Target) {
// Step #1: mark all target-independent builtins with their ID's.
for (unsigned i = Builtin::NotBuiltin+1; i != Builtin::FirstTSBuiltin; ++i)
Table.get(BuiltinInfo[i].Name).setBuiltinID(i);
// Step #2: handle target builtins.
std::vector<const char *> NonPortableBuiltins;
Target.getTargetBuiltins(TSRecords, NumTSRecords, NonPortableBuiltins);
// Step #2a: Register target-specific builtins.
for (unsigned i = 0, e = NumTSRecords; i != e; ++i)
Table.get(TSRecords[i].Name).setBuiltinID(i+Builtin::FirstTSBuiltin);
// Step #2b: Mark non-portable builtins as such.
for (unsigned i = 0, e = NonPortableBuiltins.size(); i != e; ++i)
Table.get(NonPortableBuiltins[i]).setNonPortableBuiltin(true);
}
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
/// pointer over the consumed characters. This returns the resultant type.
static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context) {
// Modifiers.
bool Long = false, LongLong = false, Signed = false, Unsigned = false;
// Read the modifiers first.
bool Done = false;
while (!Done) {
switch (*Str++) {
default: Done = true; --Str; break;
case 'S':
assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
assert(!Signed && "Can't use 'S' modifier multiple times!");
Signed = true;
break;
case 'U':
assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
assert(!Unsigned && "Can't use 'S' modifier multiple times!");
Unsigned = true;
break;
case 'L':
assert(!LongLong && "Can't have LLL modifier");
if (Long)
LongLong = true;
else
Long = true;
break;
}
}
QualType Type;
// Read the base type.
switch (*Str++) {
default: assert(0 && "Unknown builtin type letter!");
case 'v':
assert(!Long && !Signed && !Unsigned && "Bad modifiers used with 'v'!");
Type = Context.VoidTy;
break;
case 'f':
assert(!Long && !Signed && !Unsigned && "Bad modifiers used with 'f'!");
Type = Context.FloatTy;
break;
case 'd':
assert(!LongLong && !Signed && !Unsigned && "Bad modifiers used with 'd'!");
if (Long)
Type = Context.LongDoubleTy;
else
Type = Context.DoubleTy;
break;
case 's':
assert(!LongLong && "Bad modifiers used with 's'!");
if (Unsigned)
Type = Context.UnsignedShortTy;
else
Type = Context.ShortTy;
break;
case 'i':
if (Long)
Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
else if (LongLong)
Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
else if (Unsigned)
Type = Context.UnsignedIntTy;
else
Type = Context.IntTy; // default is signed.
break;
case 'c':
assert(!Long && !LongLong && "Bad modifiers used with 'c'!");
if (Signed)
Type = Context.SignedCharTy;
else if (Unsigned)
Type = Context.UnsignedCharTy;
else
Type = Context.CharTy;
break;
case 'F':
Type = Context.getCFConstantStringType();
break;
}
Done = false;
while (!Done) {
switch (*Str++) {
default: Done = true; --Str; break;
case '*':
Type = Context.getPointerType(Type);
break;
case 'C':
Type = Type.getQualifiedType(QualType::Const);
break;
}
}
return Type;
}
/// GetBuiltinType - Return the type for the specified builtin.
QualType Builtin::Context::GetBuiltinType(unsigned id, ASTContext &Context)const{
const char *TypeStr = GetRecord(id).Type;
llvm::SmallVector<QualType, 8> ArgTypes;
QualType ResType = DecodeTypeFromStr(TypeStr, Context);
while (TypeStr[0] && TypeStr[0] != '.')
ArgTypes.push_back(DecodeTypeFromStr(TypeStr, Context));
assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
"'.' should only occur at end of builtin type list!");
// handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
if (ArgTypes.size() == 0 && TypeStr[0] == '.')
return Context.getFunctionTypeNoProto(ResType);
return Context.getFunctionType(ResType, &ArgTypes[0], ArgTypes.size(),
TypeStr[0] == '.');
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,201 +0,0 @@
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/Lex/IdentifierTable.h"
using namespace clang;
// temporary statistics gathering
static unsigned nFuncs = 0;
static unsigned nBlockVars = 0;
static unsigned nFileVars = 0;
static unsigned nParmVars = 0;
static unsigned nSUC = 0;
static unsigned nEnumConst = 0;
static unsigned nEnumDecls = 0;
static unsigned nTypedef = 0;
static unsigned nFieldDecls = 0;
static unsigned nInterfaceDecls = 0;
static bool StatSwitch = false;
bool Decl::CollectingStats(bool enable) {
if (enable) StatSwitch = true;
return StatSwitch;
}
void Decl::PrintStats() {
fprintf(stderr, "*** Decl Stats:\n");
fprintf(stderr, " %d decls total.\n",
int(nFuncs+nBlockVars+nFileVars+nParmVars+nFieldDecls+nSUC+
nEnumDecls+nEnumConst+nTypedef));
fprintf(stderr, " %d function decls, %d each (%d bytes)\n",
nFuncs, (int)sizeof(FunctionDecl), int(nFuncs*sizeof(FunctionDecl)));
fprintf(stderr, " %d block variable decls, %d each (%d bytes)\n",
nBlockVars, (int)sizeof(BlockVarDecl),
int(nBlockVars*sizeof(BlockVarDecl)));
fprintf(stderr, " %d file variable decls, %d each (%d bytes)\n",
nFileVars, (int)sizeof(FileVarDecl),
int(nFileVars*sizeof(FileVarDecl)));
fprintf(stderr, " %d parameter variable decls, %d each (%d bytes)\n",
nParmVars, (int)sizeof(ParmVarDecl),
int(nParmVars*sizeof(ParmVarDecl)));
fprintf(stderr, " %d field decls, %d each (%d bytes)\n",
nFieldDecls, (int)sizeof(FieldDecl),
int(nFieldDecls*sizeof(FieldDecl)));
fprintf(stderr, " %d struct/union/class decls, %d each (%d bytes)\n",
nSUC, (int)sizeof(RecordDecl),
int(nSUC*sizeof(RecordDecl)));
fprintf(stderr, " %d enum decls, %d each (%d bytes)\n",
nEnumDecls, (int)sizeof(EnumDecl),
int(nEnumDecls*sizeof(EnumDecl)));
fprintf(stderr, " %d enum constant decls, %d each (%d bytes)\n",
nEnumConst, (int)sizeof(EnumConstantDecl),
int(nEnumConst*sizeof(EnumConstantDecl)));
fprintf(stderr, " %d typedef decls, %d each (%d bytes)\n",
nTypedef, (int)sizeof(TypedefDecl),int(nTypedef*sizeof(TypedefDecl)));
fprintf(stderr, "Total bytes = %d\n",
int(nFuncs*sizeof(FunctionDecl)+nBlockVars*sizeof(BlockVarDecl)+
nFileVars*sizeof(FileVarDecl)+nParmVars*sizeof(ParmVarDecl)+
nFieldDecls*sizeof(FieldDecl)+nSUC*sizeof(RecordDecl)+
nEnumDecls*sizeof(EnumDecl)+nEnumConst*sizeof(EnumConstantDecl)+
nTypedef*sizeof(TypedefDecl)));
}
void Decl::addDeclKind(const Kind k) {
switch (k) {
case Typedef:
nTypedef++;
break;
case Function:
nFuncs++;
break;
case BlockVariable:
nBlockVars++;
break;
case FileVariable:
nFileVars++;
break;
case ParmVariable:
nParmVars++;
break;
case EnumConstant:
nEnumConst++;
break;
case Field:
nFieldDecls++;
break;
case Struct:
case Union:
case Class:
nSUC++;
break;
case Enum:
nEnumDecls++;
break;
case ObjcInterface:
nInterfaceDecls++;
break;
}
}
// Out-of-line virtual method providing a home for Decl.
Decl::~Decl() {
}
const char *Decl::getName() const {
if (const IdentifierInfo *II = getIdentifier())
return II->getName();
return "";
}
FunctionDecl::~FunctionDecl() {
delete[] ParamInfo;
}
unsigned FunctionDecl::getNumParams() const {
return cast<FunctionTypeProto>(getType().getTypePtr())->getNumArgs();
}
void FunctionDecl::setParams(ParmVarDecl **NewParamInfo, unsigned NumParams) {
assert(ParamInfo == 0 && "Already has param info!");
assert(NumParams == getNumParams() && "Parameter count mismatch!");
// Zero params -> null pointer.
if (NumParams) {
ParamInfo = new ParmVarDecl*[NumParams];
memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
}
}
/// defineBody - When created, RecordDecl's correspond to a forward declared
/// record. This method is used to mark the decl as being defined, with the
/// specified contents.
void RecordDecl::defineBody(FieldDecl **members, unsigned numMembers) {
assert(!isDefinition() && "Cannot redefine record!");
setDefinition(true);
NumMembers = numMembers;
if (numMembers) {
Members = new FieldDecl*[numMembers];
memcpy(Members, members, numMembers*sizeof(Decl*));
}
}
FieldDecl* RecordDecl::getMember(IdentifierInfo *name) {
if (Members == 0 || NumMembers < 0)
return 0;
// linear search. When C++ classes come along, will likely need to revisit.
for (int i = 0; i < NumMembers; ++i) {
if (Members[i]->getIdentifier() == name)
return Members[i];
}
return 0;
}
void ObjcMethodDecl::setMethodParams(ParmVarDecl **NewParamInfo,
unsigned NumParams) {
assert(ParamInfo == 0 && "Already has param info!");
// Zero params -> null pointer.
if (NumParams) {
ParamInfo = new ParmVarDecl*[NumParams];
memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
NumMethodParams = NumParams;
}
}
ObjcMethodDecl::~ObjcMethodDecl() {
delete[] ParamInfo;
}
/// addObjcMethods - Insert instance and methods declarations into
/// ObjcInterfaceDecl's InsMethods and ClsMethods fields.
///
void ObjcInterfaceDecl::ObjcAddMethods(ObjcMethodDecl **insMethods,
unsigned numInsMembers,
ObjcMethodDecl **clsMethods,
unsigned numClsMembers) {
NumInsMethods = numInsMembers;
if (numInsMembers) {
InsMethods = new ObjcMethodDecl*[numInsMembers];
memcpy(InsMethods, insMethods, numInsMembers*sizeof(ObjcMethodDecl*));
}
NumClsMethods = numClsMembers;
if (numClsMembers) {
ClsMethods = new ObjcMethodDecl*[numClsMembers];
memcpy(ClsMethods, clsMethods, numClsMembers*sizeof(ObjcMethodDecl*));
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,33 +0,0 @@
//===--- ExprCXX.cpp - (C++) Expression AST Node Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the subclesses of Expr class declared in ExprCXX.h
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// CXXCastExpr
Stmt::child_iterator CXXCastExpr::child_begin() {
return reinterpret_cast<Stmt**>(&Op);
}
Stmt::child_iterator CXXCastExpr::child_end() {
return child_begin()+1;
}
// CXXBoolLiteralExpr
Stmt::child_iterator CXXBoolLiteralExpr::child_begin() { return NULL; }
Stmt::child_iterator CXXBoolLiteralExpr::child_end() { return NULL; }

View File

@@ -1,22 +0,0 @@
##===- clang/AST/Makefile ----------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Chris Lattner and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements the AST library for the C-Language front-end.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME := clangAST
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,169 +0,0 @@
//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt class and statement subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Stmt.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/IdentifierTable.h"
using namespace clang;
static struct StmtClassNameTable {
const char *Name;
unsigned Counter;
unsigned Size;
} StmtClassInfo[Stmt::lastExprConstant+1];
static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
static bool Initialized = false;
if (Initialized)
return StmtClassInfo[E];
// Intialize the table on the first use.
Initialized = true;
#define STMT(N, CLASS, PARENT) \
StmtClassInfo[N].Name = #CLASS; \
StmtClassInfo[N].Size = sizeof(CLASS);
#include "clang/AST/StmtNodes.def"
return StmtClassInfo[E];
}
const char *Stmt::getStmtClassName() const {
return getStmtInfoTableEntry(sClass).Name;
}
void Stmt::PrintStats() {
// Ensure the table is primed.
getStmtInfoTableEntry(Stmt::NullStmtClass);
unsigned sum = 0;
fprintf(stderr, "*** Stmt/Expr Stats:\n");
for (int i = 0; i != Stmt::lastExprConstant+1; i++) {
if (StmtClassInfo[i].Name == 0) continue;
sum += StmtClassInfo[i].Counter;
}
fprintf(stderr, " %d stmts/exprs total.\n", sum);
sum = 0;
for (int i = 0; i != Stmt::lastExprConstant+1; i++) {
if (StmtClassInfo[i].Name == 0) continue;
fprintf(stderr, " %d %s, %d each (%d bytes)\n",
StmtClassInfo[i].Counter, StmtClassInfo[i].Name,
StmtClassInfo[i].Size,
StmtClassInfo[i].Counter*StmtClassInfo[i].Size);
sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
}
fprintf(stderr, "Total bytes = %d\n", sum);
}
void Stmt::addStmtClass(StmtClass s) {
++getStmtInfoTableEntry(s).Counter;
}
static bool StatSwitch = false;
bool Stmt::CollectingStats(bool enable) {
if (enable) StatSwitch = true;
return StatSwitch;
}
const char *LabelStmt::getName() const {
return getID()->getName();
}
// This is defined here to avoid polluting Stmt.h with importing Expr.h
SourceRange ReturnStmt::getSourceRange() const {
if (RetExpr)
return SourceRange(RetLoc, RetExpr->getLocEnd());
else
return SourceRange(RetLoc);
}
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// DeclStmt
Stmt::child_iterator DeclStmt::child_begin() { return NULL; }
Stmt::child_iterator DeclStmt::child_end() { return NULL; }
// NullStmt
Stmt::child_iterator NullStmt::child_begin() { return NULL; }
Stmt::child_iterator NullStmt::child_end() { return NULL; }
// CompoundStmt
Stmt::child_iterator CompoundStmt::child_begin() { return &Body[0]; }
Stmt::child_iterator CompoundStmt::child_end() { return &Body[0]+Body.size(); }
// CaseStmt
Stmt::child_iterator CaseStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator CaseStmt::child_end() { return &SubExprs[END_EXPR]; }
// DefaultStmt
Stmt::child_iterator DefaultStmt::child_begin() { return &SubStmt; }
Stmt::child_iterator DefaultStmt::child_end() { return &SubStmt+1; }
// LabelStmt
Stmt::child_iterator LabelStmt::child_begin() { return &SubStmt; }
Stmt::child_iterator LabelStmt::child_end() { return &SubStmt+1; }
// IfStmt
Stmt::child_iterator IfStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator IfStmt::child_end() { return &SubExprs[0]+END_EXPR; }
// SwitchStmt
Stmt::child_iterator SwitchStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator SwitchStmt::child_end() { return &SubExprs[0]+END_EXPR; }
// WhileStmt
Stmt::child_iterator WhileStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator WhileStmt::child_end() { return &SubExprs[0]+END_EXPR; }
// DoStmt
Stmt::child_iterator DoStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator DoStmt::child_end() { return &SubExprs[0]+END_EXPR; }
// ForStmt
Stmt::child_iterator ForStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator ForStmt::child_end() { return &SubExprs[0]+END_EXPR; }
// GotoStmt
Stmt::child_iterator GotoStmt::child_begin() { return NULL; }
Stmt::child_iterator GotoStmt::child_end() { return NULL; }
// IndirectGotoStmt
Stmt::child_iterator IndirectGotoStmt::child_begin() {
return reinterpret_cast<Stmt**>(&Target);
}
Stmt::child_iterator IndirectGotoStmt::child_end() { return child_begin()+1; }
// ContinueStmt
Stmt::child_iterator ContinueStmt::child_begin() { return NULL; }
Stmt::child_iterator ContinueStmt::child_end() { return NULL; }
// BreakStmt
Stmt::child_iterator BreakStmt::child_begin() { return NULL; }
Stmt::child_iterator BreakStmt::child_end() { return NULL; }
// ReturnStmt
Stmt::child_iterator ReturnStmt::child_begin() {
if (RetExpr) return reinterpret_cast<Stmt**>(&RetExpr);
else return NULL;
}
Stmt::child_iterator ReturnStmt::child_end() {
if (RetExpr) return reinterpret_cast<Stmt**>(&RetExpr)+1;
else return NULL;
}

View File

@@ -1,443 +0,0 @@
//===--- StmtDumper.cpp - Dumping implementation for Stmt ASTs ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt::dump/Stmt::print methods, which dump out the
// AST in a form that exposes type details and other fields.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/IdentifierTable.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/Compiler.h"
#include <cstdio>
using namespace clang;
//===----------------------------------------------------------------------===//
// StmtDumper Visitor
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN StmtDumper : public StmtVisitor<StmtDumper> {
SourceManager *SM;
FILE *F;
unsigned IndentLevel;
/// MaxDepth - When doing a normal dump (not dumpAll) we only want to dump
/// the first few levels of an AST. This keeps track of how many ast levels
/// are left.
unsigned MaxDepth;
/// LastLocFilename/LastLocLine - Keep track of the last location we print
/// out so that we can print out deltas from then on out.
const char *LastLocFilename;
unsigned LastLocLine;
public:
StmtDumper(SourceManager *sm, FILE *f, unsigned maxDepth)
: SM(sm), F(f), IndentLevel(0-1), MaxDepth(maxDepth) {
LastLocFilename = "";
LastLocLine = ~0U;
}
void DumpSubTree(Stmt *S) {
// Prune the recursion if not using dump all.
if (MaxDepth == 0) return;
++IndentLevel;
if (S) {
Visit(S);
// Print out children.
Stmt::child_iterator CI = S->child_begin(), CE = S->child_end();
if (CI != CE) {
while (CI != CE) {
fprintf(F, "\n");
DumpSubTree(*CI++);
}
}
fprintf(F, ")");
} else {
Indent();
fprintf(F, "<<<NULL>>>");
}
--IndentLevel;
}
void DumpDeclarator(Decl *D);
void Indent() const {
for (int i = 0, e = IndentLevel; i < e; ++i)
fprintf(F, " ");
}
void DumpType(QualType T) {
fprintf(F, "'%s'", T.getAsString().c_str());
// If the type is directly a typedef, strip off typedefness to give at
// least one level of concreteness.
if (TypedefType *TDT = dyn_cast<TypedefType>(T))
fprintf(F, ":'%s'", TDT->LookThroughTypedefs().getAsString().c_str());
}
void DumpStmt(const Stmt *Node) {
Indent();
fprintf(F, "(%s %p", Node->getStmtClassName(), (void*)Node);
DumpSourceRange(Node);
}
void DumpExpr(const Expr *Node) {
DumpStmt(Node);
fprintf(F, " ");
DumpType(Node->getType());
}
void DumpSourceRange(const Stmt *Node);
void DumpLocation(SourceLocation Loc);
// Stmts.
void VisitStmt(Stmt *Node);
void VisitDeclStmt(DeclStmt *Node);
void VisitLabelStmt(LabelStmt *Node);
void VisitGotoStmt(GotoStmt *Node);
// Exprs
void VisitExpr(Expr *Node);
void VisitDeclRefExpr(DeclRefExpr *Node);
void VisitPreDefinedExpr(PreDefinedExpr *Node);
void VisitCharacterLiteral(CharacterLiteral *Node);
void VisitIntegerLiteral(IntegerLiteral *Node);
void VisitFloatingLiteral(FloatingLiteral *Node);
void VisitStringLiteral(StringLiteral *Str);
void VisitUnaryOperator(UnaryOperator *Node);
void VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr *Node);
void VisitMemberExpr(MemberExpr *Node);
void VisitOCUVectorElementExpr(OCUVectorElementExpr *Node);
void VisitBinaryOperator(BinaryOperator *Node);
void VisitCompoundAssignOperator(CompoundAssignOperator *Node);
void VisitAddrLabelExpr(AddrLabelExpr *Node);
void VisitTypesCompatibleExpr(TypesCompatibleExpr *Node);
// C++
void VisitCXXCastExpr(CXXCastExpr *Node);
void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *Node);
// ObjC
void VisitObjCEncodeExpr(ObjCEncodeExpr *Node);
};
}
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
void StmtDumper::DumpLocation(SourceLocation Loc) {
SourceLocation PhysLoc = SM->getPhysicalLoc(Loc);
// The general format we print out is filename:line:col, but we drop pieces
// that haven't changed since the last loc printed.
const char *Filename = SM->getSourceName(PhysLoc);
unsigned LineNo = SM->getLineNumber(PhysLoc);
if (strcmp(Filename, LastLocFilename) != 0) {
fprintf(stderr, "%s:%u:%u", Filename, LineNo, SM->getColumnNumber(PhysLoc));
LastLocFilename = Filename;
LastLocLine = LineNo;
} else if (LineNo != LastLocLine) {
fprintf(stderr, "line:%u:%u", LineNo, SM->getColumnNumber(PhysLoc));
LastLocLine = LineNo;
} else {
fprintf(stderr, "col:%u", SM->getColumnNumber(PhysLoc));
}
}
void StmtDumper::DumpSourceRange(const Stmt *Node) {
// Can't translate locations if a SourceManager isn't available.
if (SM == 0) return;
// TODO: If the parent expression is available, we can print a delta vs its
// location.
SourceRange R = Node->getSourceRange();
fprintf(stderr, " <");
DumpLocation(R.Begin());
if (R.Begin() != R.End()) {
fprintf(stderr, ", ");
DumpLocation(R.End());
}
fprintf(stderr, ">");
// <t2.c:123:421[blah], t2.c:412:321>
}
//===----------------------------------------------------------------------===//
// Stmt printing methods.
//===----------------------------------------------------------------------===//
void StmtDumper::VisitStmt(Stmt *Node) {
DumpStmt(Node);
}
void StmtDumper::DumpDeclarator(Decl *D) {
// FIXME: Need to complete/beautify this... this code simply shows the
// nodes are where they need to be.
if (TypedefDecl *localType = dyn_cast<TypedefDecl>(D)) {
fprintf(F, "\"typedef %s %s\"",
localType->getUnderlyingType().getAsString().c_str(),
localType->getName());
} else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
fprintf(F, "\"");
// Emit storage class for vardecls.
if (VarDecl *V = dyn_cast<VarDecl>(VD)) {
switch (V->getStorageClass()) {
default: assert(0 && "Unknown storage class!");
case VarDecl::None: break;
case VarDecl::Extern: fprintf(F, "extern "); break;
case VarDecl::Static: fprintf(F, "static "); break;
case VarDecl::Auto: fprintf(F, "auto "); break;
case VarDecl::Register: fprintf(F, "register "); break;
}
}
std::string Name = VD->getName();
VD->getType().getAsStringInternal(Name);
fprintf(F, "%s", Name.c_str());
// If this is a vardecl with an initializer, emit it.
if (VarDecl *V = dyn_cast<VarDecl>(VD)) {
if (V->getInit()) {
fprintf(F, " =\n");
DumpSubTree(V->getInit());
}
}
fprintf(F, "\"");
} else {
// FIXME: "struct x;"
assert(0 && "Unexpected decl");
}
}
void StmtDumper::VisitDeclStmt(DeclStmt *Node) {
DumpStmt(Node);
fprintf(F, "\n");
for (Decl *D = Node->getDecl(); D; D = D->getNextDeclarator()) {
++IndentLevel;
Indent();
fprintf(F, "%p ", (void*)D);
DumpDeclarator(D);
if (D->getNextDeclarator())
fprintf(F, "\n");
--IndentLevel;
}
}
void StmtDumper::VisitLabelStmt(LabelStmt *Node) {
DumpStmt(Node);
fprintf(F, " '%s'\n", Node->getName());
}
void StmtDumper::VisitGotoStmt(GotoStmt *Node) {
DumpStmt(Node);
fprintf(F, " '%s':%p", Node->getLabel()->getName(), (void*)Node->getLabel());
}
//===----------------------------------------------------------------------===//
// Expr printing methods.
//===----------------------------------------------------------------------===//
void StmtDumper::VisitExpr(Expr *Node) {
DumpExpr(Node);
}
void StmtDumper::VisitDeclRefExpr(DeclRefExpr *Node) {
DumpExpr(Node);
fprintf(F, " ");
switch (Node->getDecl()->getKind()) {
case Decl::Function: fprintf(F,"FunctionDecl"); break;
case Decl::BlockVariable: fprintf(F,"BlockVariable"); break;
case Decl::FileVariable: fprintf(F,"FileVariable"); break;
case Decl::ParmVariable: fprintf(F,"ParmVariable"); break;
case Decl::EnumConstant: fprintf(F,"EnumConstant"); break;
case Decl::Typedef: fprintf(F,"Typedef"); break;
case Decl::Struct: fprintf(F,"Struct"); break;
case Decl::Union: fprintf(F,"Union"); break;
case Decl::Class: fprintf(F,"Class"); break;
case Decl::Enum: fprintf(F,"Enum"); break;
case Decl::ObjcInterface: fprintf(F,"ObjcInterface"); break;
case Decl::ObjcClass: fprintf(F,"ObjcClass"); break;
default: fprintf(F,"Decl"); break;
}
fprintf(F, "='%s' %p", Node->getDecl()->getName(), (void*)Node->getDecl());
}
void StmtDumper::VisitPreDefinedExpr(PreDefinedExpr *Node) {
DumpExpr(Node);
switch (Node->getIdentType()) {
default:
assert(0 && "unknown case");
case PreDefinedExpr::Func:
fprintf(F, " __func__");
break;
case PreDefinedExpr::Function:
fprintf(F, " __FUNCTION__");
break;
case PreDefinedExpr::PrettyFunction:
fprintf(F, " __PRETTY_FUNCTION__");
break;
}
}
void StmtDumper::VisitCharacterLiteral(CharacterLiteral *Node) {
DumpExpr(Node);
fprintf(F, " %d", Node->getValue());
}
void StmtDumper::VisitIntegerLiteral(IntegerLiteral *Node) {
DumpExpr(Node);
bool isSigned = Node->getType()->isSignedIntegerType();
fprintf(F, " %s", Node->getValue().toString(10, isSigned).c_str());
}
void StmtDumper::VisitFloatingLiteral(FloatingLiteral *Node) {
DumpExpr(Node);
fprintf(F, " %f", Node->getValue());
}
void StmtDumper::VisitStringLiteral(StringLiteral *Str) {
DumpExpr(Str);
// FIXME: this doesn't print wstrings right.
fprintf(F, " %s\"", Str->isWide() ? "L" : "");
for (unsigned i = 0, e = Str->getByteLength(); i != e; ++i) {
switch (char C = Str->getStrData()[i]) {
default:
if (isprint(C))
fputc(C, F);
else
fprintf(F, "\\%03o", C);
break;
// Handle some common ones to make dumps prettier.
case '\\': fprintf(F, "\\\\"); break;
case '"': fprintf(F, "\\\""); break;
case '\n': fprintf(F, "\\n"); break;
case '\t': fprintf(F, "\\t"); break;
case '\a': fprintf(F, "\\a"); break;
case '\b': fprintf(F, "\\b"); break;
}
}
fprintf(F, "\"");
}
void StmtDumper::VisitUnaryOperator(UnaryOperator *Node) {
DumpExpr(Node);
fprintf(F, " %s '%s'", Node->isPostfix() ? "postfix" : "prefix",
UnaryOperator::getOpcodeStr(Node->getOpcode()));
}
void StmtDumper::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr *Node) {
DumpExpr(Node);
fprintf(F, " %s ", Node->isSizeOf() ? "sizeof" : "alignof");
DumpType(Node->getArgumentType());
}
void StmtDumper::VisitMemberExpr(MemberExpr *Node) {
DumpExpr(Node);
fprintf(F, " %s%s %p", Node->isArrow() ? "->" : ".",
Node->getMemberDecl()->getName(), (void*)Node->getMemberDecl());
}
void StmtDumper::VisitOCUVectorElementExpr(OCUVectorElementExpr *Node) {
DumpExpr(Node);
fprintf(F, " %s", Node->getAccessor().getName());
}
void StmtDumper::VisitBinaryOperator(BinaryOperator *Node) {
DumpExpr(Node);
fprintf(F, " '%s'", BinaryOperator::getOpcodeStr(Node->getOpcode()));
}
void StmtDumper::VisitCompoundAssignOperator(CompoundAssignOperator *Node) {
DumpExpr(Node);
fprintf(F, " '%s' ComputeTy=",
BinaryOperator::getOpcodeStr(Node->getOpcode()));
DumpType(Node->getComputationType());
}
// GNU extensions.
void StmtDumper::VisitAddrLabelExpr(AddrLabelExpr *Node) {
DumpExpr(Node);
fprintf(F, " %s %p", Node->getLabel()->getName(), (void*)Node->getLabel());
}
void StmtDumper::VisitTypesCompatibleExpr(TypesCompatibleExpr *Node) {
DumpExpr(Node);
fprintf(F, " ");
DumpType(Node->getArgType1());
fprintf(F, " ");
DumpType(Node->getArgType2());
}
//===----------------------------------------------------------------------===//
// C++ Expressions
//===----------------------------------------------------------------------===//
void StmtDumper::VisitCXXCastExpr(CXXCastExpr *Node) {
DumpExpr(Node);
fprintf(F, " %s", CXXCastExpr::getOpcodeStr(Node->getOpcode()));
}
void StmtDumper::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *Node) {
DumpExpr(Node);
fprintf(F, " %s", Node->getValue() ? "true" : "false");
}
//===----------------------------------------------------------------------===//
// Obj-C Expressions
//===----------------------------------------------------------------------===//
void StmtDumper::VisitObjCEncodeExpr(ObjCEncodeExpr *Node) {
DumpExpr(Node);
fprintf(F, " ");
DumpType(Node->getEncodedType());
}
//===----------------------------------------------------------------------===//
// Stmt method implementations
//===----------------------------------------------------------------------===//
/// dump - This does a local dump of the specified AST fragment. It dumps the
/// specified node and a few nodes underneath it, but not the whole subtree.
/// This is useful in a debugger.
void Stmt::dump(SourceManager &SM) const {
StmtDumper P(&SM, stderr, 4);
P.DumpSubTree(const_cast<Stmt*>(this));
fprintf(stderr, "\n");
}
/// dump - This does a local dump of the specified AST fragment. It dumps the
/// specified node and a few nodes underneath it, but not the whole subtree.
/// This is useful in a debugger.
void Stmt::dump() const {
StmtDumper P(0, stderr, 4);
P.DumpSubTree(const_cast<Stmt*>(this));
fprintf(stderr, "\n");
}
/// dumpAll - This does a dump of the specified AST fragment and all subtrees.
void Stmt::dumpAll(SourceManager &SM) const {
StmtDumper P(&SM, stderr, ~0U);
P.DumpSubTree(const_cast<Stmt*>(this));
fprintf(stderr, "\n");
}
/// dumpAll - This does a dump of the specified AST fragment and all subtrees.
void Stmt::dumpAll() const {
StmtDumper P(0, stderr, ~0U);
P.DumpSubTree(const_cast<Stmt*>(this));
fprintf(stderr, "\n");
}

View File

@@ -1,620 +0,0 @@
//===--- StmtPrinter.cpp - Printing implementation for Stmt ASTs ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt::dumpPretty/Stmt::printPretty methods, which
// pretty print the AST back out to C code.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/Lex/IdentifierTable.h"
#include "llvm/Support/Compiler.h"
#include <iostream>
#include <iomanip>
using namespace clang;
//===----------------------------------------------------------------------===//
// StmtPrinter Visitor
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN StmtPrinter : public StmtVisitor<StmtPrinter> {
std::ostream &OS;
unsigned IndentLevel;
clang::PrinterHelper* Helper;
public:
StmtPrinter(std::ostream &os, PrinterHelper* helper) :
OS(os), IndentLevel(0), Helper(helper) {}
void PrintStmt(Stmt *S, int SubIndent = 1) {
IndentLevel += SubIndent;
if (S && isa<Expr>(S)) {
// If this is an expr used in a stmt context, indent and newline it.
Indent();
Visit(S);
OS << ";\n";
} else if (S) {
Visit(S);
} else {
Indent() << "<<<NULL STATEMENT>>>\n";
}
IndentLevel -= SubIndent;
}
void PrintRawCompoundStmt(CompoundStmt *S);
void PrintRawDecl(Decl *D);
void PrintRawIfStmt(IfStmt *If);
void PrintExpr(Expr *E) {
if (E)
Visit(E);
else
OS << "<null expr>";
}
std::ostream &Indent(int Delta = 0) const {
for (int i = 0, e = IndentLevel+Delta; i < e; ++i)
OS << " ";
return OS;
}
bool PrintOffsetOfDesignator(Expr *E);
void VisitUnaryOffsetOf(UnaryOperator *Node);
void Visit(Stmt* S) {
if (Helper && Helper->handledStmt(S,OS))
return;
else StmtVisitor<StmtPrinter>::Visit(S);
}
void VisitStmt(Stmt *Node);
#define STMT(N, CLASS, PARENT) \
void Visit##CLASS(CLASS *Node);
#include "clang/AST/StmtNodes.def"
};
}
//===----------------------------------------------------------------------===//
// Stmt printing methods.
//===----------------------------------------------------------------------===//
void StmtPrinter::VisitStmt(Stmt *Node) {
Indent() << "<<unknown stmt type>>\n";
}
/// PrintRawCompoundStmt - Print a compound stmt without indenting the {, and
/// with no newline after the }.
void StmtPrinter::PrintRawCompoundStmt(CompoundStmt *Node) {
OS << "{\n";
for (CompoundStmt::body_iterator I = Node->body_begin(), E = Node->body_end();
I != E; ++I)
PrintStmt(*I);
Indent() << "}";
}
void StmtPrinter::PrintRawDecl(Decl *D) {
// FIXME: Need to complete/beautify this... this code simply shows the
// nodes are where they need to be.
if (TypedefDecl *localType = dyn_cast<TypedefDecl>(D)) {
OS << "typedef " << localType->getUnderlyingType().getAsString();
OS << " " << localType->getName();
} else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
// Emit storage class for vardecls.
if (VarDecl *V = dyn_cast<VarDecl>(VD)) {
switch (V->getStorageClass()) {
default: assert(0 && "Unknown storage class!");
case VarDecl::None: break;
case VarDecl::Extern: OS << "extern "; break;
case VarDecl::Static: OS << "static "; break;
case VarDecl::Auto: OS << "auto "; break;
case VarDecl::Register: OS << "register "; break;
}
}
std::string Name = VD->getName();
VD->getType().getAsStringInternal(Name);
OS << Name;
// If this is a vardecl with an initializer, emit it.
if (VarDecl *V = dyn_cast<VarDecl>(VD)) {
if (V->getInit()) {
OS << " = ";
PrintExpr(V->getInit());
}
}
} else {
// FIXME: "struct x;"
assert(0 && "Unexpected decl");
}
}
void StmtPrinter::VisitNullStmt(NullStmt *Node) {
Indent() << ";\n";
}
void StmtPrinter::VisitDeclStmt(DeclStmt *Node) {
for (Decl *D = Node->getDecl(); D; D = D->getNextDeclarator()) {
Indent();
PrintRawDecl(D);
OS << ";\n";
}
}
void StmtPrinter::VisitCompoundStmt(CompoundStmt *Node) {
Indent();
PrintRawCompoundStmt(Node);
OS << "\n";
}
void StmtPrinter::VisitCaseStmt(CaseStmt *Node) {
Indent(-1) << "case ";
PrintExpr(Node->getLHS());
if (Node->getRHS()) {
OS << " ... ";
PrintExpr(Node->getRHS());
}
OS << ":\n";
PrintStmt(Node->getSubStmt(), 0);
}
void StmtPrinter::VisitDefaultStmt(DefaultStmt *Node) {
Indent(-1) << "default:\n";
PrintStmt(Node->getSubStmt(), 0);
}
void StmtPrinter::VisitLabelStmt(LabelStmt *Node) {
Indent(-1) << Node->getName() << ":\n";
PrintStmt(Node->getSubStmt(), 0);
}
void StmtPrinter::PrintRawIfStmt(IfStmt *If) {
OS << "if ";
PrintExpr(If->getCond());
if (CompoundStmt *CS = dyn_cast<CompoundStmt>(If->getThen())) {
OS << ' ';
PrintRawCompoundStmt(CS);
OS << (If->getElse() ? ' ' : '\n');
} else {
OS << '\n';
PrintStmt(If->getThen());
if (If->getElse()) Indent();
}
if (Stmt *Else = If->getElse()) {
OS << "else";
if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Else)) {
OS << ' ';
PrintRawCompoundStmt(CS);
OS << '\n';
} else if (IfStmt *ElseIf = dyn_cast<IfStmt>(Else)) {
OS << ' ';
PrintRawIfStmt(ElseIf);
} else {
OS << '\n';
PrintStmt(If->getElse());
}
}
}
void StmtPrinter::VisitIfStmt(IfStmt *If) {
Indent();
PrintRawIfStmt(If);
}
void StmtPrinter::VisitSwitchStmt(SwitchStmt *Node) {
Indent() << "switch (";
PrintExpr(Node->getCond());
OS << ")";
// Pretty print compoundstmt bodies (very common).
if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Node->getBody())) {
OS << " ";
PrintRawCompoundStmt(CS);
OS << "\n";
} else {
OS << "\n";
PrintStmt(Node->getBody());
}
}
void StmtPrinter::VisitSwitchCase(SwitchCase*) {
assert(0 && "SwitchCase is an abstract class");
}
void StmtPrinter::VisitWhileStmt(WhileStmt *Node) {
Indent() << "while (";
PrintExpr(Node->getCond());
OS << ")\n";
PrintStmt(Node->getBody());
}
void StmtPrinter::VisitDoStmt(DoStmt *Node) {
Indent() << "do\n";
PrintStmt(Node->getBody());
Indent() << "while ";
PrintExpr(Node->getCond());
OS << ";\n";
}
void StmtPrinter::VisitForStmt(ForStmt *Node) {
Indent() << "for (";
if (Node->getInit()) {
if (DeclStmt *DS = dyn_cast<DeclStmt>(Node->getInit()))
PrintRawDecl(DS->getDecl());
else
PrintExpr(cast<Expr>(Node->getInit()));
}
OS << "; ";
if (Node->getCond())
PrintExpr(Node->getCond());
OS << "; ";
if (Node->getInc())
PrintExpr(Node->getInc());
OS << ")\n";
PrintStmt(Node->getBody());
}
void StmtPrinter::VisitGotoStmt(GotoStmt *Node) {
Indent() << "goto " << Node->getLabel()->getName() << ";\n";
}
void StmtPrinter::VisitIndirectGotoStmt(IndirectGotoStmt *Node) {
Indent() << "goto *";
PrintExpr(Node->getTarget());
OS << ";\n";
}
void StmtPrinter::VisitContinueStmt(ContinueStmt *Node) {
Indent() << "continue;\n";
}
void StmtPrinter::VisitBreakStmt(BreakStmt *Node) {
Indent() << "break;\n";
}
void StmtPrinter::VisitReturnStmt(ReturnStmt *Node) {
Indent() << "return";
if (Node->getRetValue()) {
OS << " ";
PrintExpr(Node->getRetValue());
}
OS << ";\n";
}
//===----------------------------------------------------------------------===//
// Expr printing methods.
//===----------------------------------------------------------------------===//
void StmtPrinter::VisitExpr(Expr *Node) {
OS << "<<unknown expr type>>";
}
void StmtPrinter::VisitDeclRefExpr(DeclRefExpr *Node) {
OS << Node->getDecl()->getName();
}
void StmtPrinter::VisitPreDefinedExpr(PreDefinedExpr *Node) {
switch (Node->getIdentType()) {
default:
assert(0 && "unknown case");
case PreDefinedExpr::Func:
OS << "__func__";
break;
case PreDefinedExpr::Function:
OS << "__FUNCTION__";
break;
case PreDefinedExpr::PrettyFunction:
OS << "__PRETTY_FUNCTION__";
break;
}
}
void StmtPrinter::VisitCharacterLiteral(CharacterLiteral *Node) {
// FIXME should print an L for wchar_t constants
unsigned value = Node->getValue();
switch (value) {
case '\\':
OS << "'\\\\'";
break;
case '\'':
OS << "'\\''";
break;
case '\a':
// TODO: K&R: the meaning of '\\a' is different in traditional C
OS << "'\\a'";
break;
case '\b':
OS << "'\\b'";
break;
// Nonstandard escape sequence.
/*case '\e':
OS << "'\\e'";
break;*/
case '\f':
OS << "'\\f'";
break;
case '\n':
OS << "'\\n'";
break;
case '\r':
OS << "'\\r'";
break;
case '\t':
OS << "'\\t'";
break;
case '\v':
OS << "'\\v'";
break;
default:
if (isprint(value) && value < 256) {
OS << "'" << (char)value << "'";
} else if (value < 256) {
OS << "'\\x" << std::hex << value << std::dec << "'";
} else {
// FIXME what to really do here?
OS << value;
}
}
}
void StmtPrinter::VisitIntegerLiteral(IntegerLiteral *Node) {
bool isSigned = Node->getType()->isSignedIntegerType();
OS << Node->getValue().toString(10, isSigned);
// Emit suffixes. Integer literals are always a builtin integer type.
switch (cast<BuiltinType>(Node->getType().getCanonicalType())->getKind()) {
default: assert(0 && "Unexpected type for integer literal!");
case BuiltinType::Int: break; // no suffix.
case BuiltinType::UInt: OS << 'U'; break;
case BuiltinType::Long: OS << 'L'; break;
case BuiltinType::ULong: OS << "UL"; break;
case BuiltinType::LongLong: OS << "LL"; break;
case BuiltinType::ULongLong: OS << "ULL"; break;
}
}
void StmtPrinter::VisitFloatingLiteral(FloatingLiteral *Node) {
// FIXME: print value more precisely.
OS << Node->getValue();
}
void StmtPrinter::VisitImaginaryLiteral(ImaginaryLiteral *Node) {
PrintExpr(Node->getSubExpr());
OS << "i";
}
void StmtPrinter::VisitStringLiteral(StringLiteral *Str) {
if (Str->isWide()) OS << 'L';
OS << '"';
// FIXME: this doesn't print wstrings right.
for (unsigned i = 0, e = Str->getByteLength(); i != e; ++i) {
switch (Str->getStrData()[i]) {
default: OS << Str->getStrData()[i]; break;
// Handle some common ones to make dumps prettier.
case '\\': OS << "\\\\"; break;
case '"': OS << "\\\""; break;
case '\n': OS << "\\n"; break;
case '\t': OS << "\\t"; break;
case '\a': OS << "\\a"; break;
case '\b': OS << "\\b"; break;
}
}
OS << '"';
}
void StmtPrinter::VisitParenExpr(ParenExpr *Node) {
OS << "(";
PrintExpr(Node->getSubExpr());
OS << ")";
}
void StmtPrinter::VisitUnaryOperator(UnaryOperator *Node) {
if (!Node->isPostfix()) {
OS << UnaryOperator::getOpcodeStr(Node->getOpcode());
// Print a space if this is an "identifier operator" like sizeof or __real.
switch (Node->getOpcode()) {
default: break;
case UnaryOperator::SizeOf:
case UnaryOperator::AlignOf:
case UnaryOperator::Real:
case UnaryOperator::Imag:
case UnaryOperator::Extension:
OS << ' ';
break;
}
}
PrintExpr(Node->getSubExpr());
if (Node->isPostfix())
OS << UnaryOperator::getOpcodeStr(Node->getOpcode());
}
bool StmtPrinter::PrintOffsetOfDesignator(Expr *E) {
if (isa<CompoundLiteralExpr>(E)) {
// Base case, print the type and comma.
OS << E->getType().getAsString() << ", ";
return true;
} else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
PrintOffsetOfDesignator(ASE->getLHS());
OS << "[";
PrintExpr(ASE->getRHS());
OS << "]";
return false;
} else {
MemberExpr *ME = cast<MemberExpr>(E);
bool IsFirst = PrintOffsetOfDesignator(ME->getBase());
OS << (IsFirst ? "" : ".") << ME->getMemberDecl()->getName();
return false;
}
}
void StmtPrinter::VisitUnaryOffsetOf(UnaryOperator *Node) {
OS << "__builtin_offsetof(";
PrintOffsetOfDesignator(Node->getSubExpr());
OS << ")";
}
void StmtPrinter::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr *Node) {
OS << (Node->isSizeOf() ? "sizeof(" : "__alignof(");
OS << Node->getArgumentType().getAsString() << ")";
}
void StmtPrinter::VisitArraySubscriptExpr(ArraySubscriptExpr *Node) {
PrintExpr(Node->getLHS());
OS << "[";
PrintExpr(Node->getRHS());
OS << "]";
}
void StmtPrinter::VisitCallExpr(CallExpr *Call) {
PrintExpr(Call->getCallee());
OS << "(";
for (unsigned i = 0, e = Call->getNumArgs(); i != e; ++i) {
if (i) OS << ", ";
PrintExpr(Call->getArg(i));
}
OS << ")";
}
void StmtPrinter::VisitMemberExpr(MemberExpr *Node) {
PrintExpr(Node->getBase());
OS << (Node->isArrow() ? "->" : ".");
FieldDecl *Field = Node->getMemberDecl();
assert(Field && "MemberExpr should alway reference a field!");
OS << Field->getName();
}
void StmtPrinter::VisitOCUVectorElementExpr(OCUVectorElementExpr *Node) {
PrintExpr(Node->getBase());
OS << ".";
OS << Node->getAccessor().getName();
}
void StmtPrinter::VisitCastExpr(CastExpr *Node) {
OS << "(" << Node->getType().getAsString() << ")";
PrintExpr(Node->getSubExpr());
}
void StmtPrinter::VisitCompoundLiteralExpr(CompoundLiteralExpr *Node) {
OS << "(" << Node->getType().getAsString() << ")";
PrintExpr(Node->getInitializer());
}
void StmtPrinter::VisitImplicitCastExpr(ImplicitCastExpr *Node) {
// No need to print anything, simply forward to the sub expression.
PrintExpr(Node->getSubExpr());
}
void StmtPrinter::VisitBinaryOperator(BinaryOperator *Node) {
PrintExpr(Node->getLHS());
OS << " " << BinaryOperator::getOpcodeStr(Node->getOpcode()) << " ";
PrintExpr(Node->getRHS());
}
void StmtPrinter::VisitCompoundAssignOperator(CompoundAssignOperator *Node) {
PrintExpr(Node->getLHS());
OS << " " << BinaryOperator::getOpcodeStr(Node->getOpcode()) << " ";
PrintExpr(Node->getRHS());
}
void StmtPrinter::VisitConditionalOperator(ConditionalOperator *Node) {
PrintExpr(Node->getCond());
OS << " ? ";
PrintExpr(Node->getLHS());
OS << " : ";
PrintExpr(Node->getRHS());
}
// GNU extensions.
void StmtPrinter::VisitAddrLabelExpr(AddrLabelExpr *Node) {
OS << "&&" << Node->getLabel()->getName();
}
void StmtPrinter::VisitStmtExpr(StmtExpr *E) {
OS << "(";
PrintRawCompoundStmt(E->getSubStmt());
OS << ")";
}
void StmtPrinter::VisitTypesCompatibleExpr(TypesCompatibleExpr *Node) {
OS << "__builtin_types_compatible_p(";
OS << Node->getArgType1().getAsString() << ",";
OS << Node->getArgType2().getAsString() << ")";
}
void StmtPrinter::VisitChooseExpr(ChooseExpr *Node) {
OS << "__builtin_choose_expr(";
PrintExpr(Node->getCond());
OS << ", ";
PrintExpr(Node->getLHS());
OS << ", ";
PrintExpr(Node->getRHS());
OS << ")";
}
void StmtPrinter::VisitInitListExpr(InitListExpr* Node) {
OS << "{ ";
for (unsigned i = 0, e = Node->getNumInits(); i != e; ++i) {
if (i) OS << ", ";
PrintExpr(Node->getInit(i));
}
OS << " }";
}
// C++
void StmtPrinter::VisitCXXCastExpr(CXXCastExpr *Node) {
OS << CXXCastExpr::getOpcodeStr(Node->getOpcode()) << '<';
OS << Node->getDestType().getAsString() << ">(";
PrintExpr(Node->getSubExpr());
OS << ")";
}
void StmtPrinter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *Node) {
OS << (Node->getValue() ? "true" : "false");
}
// Obj-C
void StmtPrinter::VisitObjCStringLiteral(ObjCStringLiteral *Node) {
OS << "@";
VisitStringLiteral(Node->getString());
}
void StmtPrinter::VisitObjCEncodeExpr(ObjCEncodeExpr *Node) {
OS << "@encode(";
OS << Node->getEncodedType().getAsString() << ")";
}
//===----------------------------------------------------------------------===//
// Stmt method implementations
//===----------------------------------------------------------------------===//
void Stmt::dumpPretty() const {
// FIXME: eliminate use of <iostream>
printPretty(std::cerr);
}
void Stmt::printPretty(std::ostream &OS, PrinterHelper* Helper) const {
if (this == 0) {
OS << "<NULL>";
return;
}
StmtPrinter P(OS, Helper);
P.Visit(const_cast<Stmt*>(this));
}
//===----------------------------------------------------------------------===//
// PrinterHelper
//===----------------------------------------------------------------------===//
// Implement virtual destructor.
PrinterHelper::~PrinterHelper() {}

View File

@@ -1,857 +0,0 @@
//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/IdentifierTable.h"
#include "clang/AST/Type.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/StringExtras.h"
#include <sstream>
using namespace clang;
Type::~Type() {}
/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
return false;
}
bool Type::isObjectType() const {
if (isa<FunctionType>(CanonicalType))
return false;
else if (CanonicalType->isIncompleteType())
return false;
else
return true;
}
bool Type::isDerivedType() const {
switch (CanonicalType->getTypeClass()) {
case Pointer:
case VariableArray:
case ConstantArray:
case FunctionProto:
case FunctionNoProto:
case Reference:
return true;
case Tagged: {
const TagType *TT = cast<TagType>(CanonicalType);
const Decl::Kind Kind = TT->getDecl()->getKind();
return Kind == Decl::Struct || Kind == Decl::Union;
}
default:
return false;
}
}
bool Type::isStructureType() const {
if (const RecordType *RT = dyn_cast<RecordType>(this))
if (RT->getDecl()->getKind() == Decl::Struct)
return true;
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = dyn_cast<RecordType>(this))
if (RT->getDecl()->getKind() == Decl::Union)
return true;
return false;
}
bool Type::isComplexType() const {
return isa<ComplexType>(CanonicalType);
}
const BuiltinType *Type::getAsBuiltinType() const {
// If this is directly a builtin type, return it.
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(this))
return BTy;
// If this is a typedef for a builtin type, strip the typedef off without
// losing all typedef information.
if (isa<BuiltinType>(CanonicalType))
return cast<BuiltinType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const FunctionType *Type::getAsFunctionType() const {
// If this is directly a function type, return it.
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
return FTy;
// If this is a typedef for a function type, strip the typedef off without
// losing all typedef information.
if (isa<FunctionType>(CanonicalType))
return cast<FunctionType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const PointerType *Type::getAsPointerType() const {
// If this is directly a pointer type, return it.
if (const PointerType *PTy = dyn_cast<PointerType>(this))
return PTy;
// If this is a typedef for a pointer type, strip the typedef off without
// losing all typedef information.
if (isa<PointerType>(CanonicalType))
return cast<PointerType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const ReferenceType *Type::getAsReferenceType() const {
// If this is directly a reference type, return it.
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(this))
return RTy;
// If this is a typedef for a reference type, strip the typedef off without
// losing all typedef information.
if (isa<ReferenceType>(CanonicalType))
return cast<ReferenceType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const ArrayType *Type::getAsArrayType() const {
// If this is directly an array type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
if (isa<ArrayType>(CanonicalType))
return cast<ArrayType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const ConstantArrayType *Type::getAsConstantArrayType() const {
// If this is directly a constant array type, return it.
if (const ConstantArrayType *ATy = dyn_cast<ConstantArrayType>(this))
return ATy;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
if (isa<ConstantArrayType>(CanonicalType))
return cast<ConstantArrayType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const VariableArrayType *Type::getAsVariableArrayType() const {
// If this is directly a variable array type, return it.
if (const VariableArrayType *ATy = dyn_cast<VariableArrayType>(this))
return ATy;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
if (isa<VariableArrayType>(CanonicalType))
return cast<VariableArrayType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
/// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
/// types that have a non-constant expression. This does not include "[]".
bool Type::isVariablyModifiedType() const {
if (const VariableArrayType *VAT = getAsVariableArrayType()) {
if (VAT->getSizeExpr())
return true;
}
return false;
}
const VariableArrayType *Type::getAsVariablyModifiedType() const {
if (const VariableArrayType *VAT = getAsVariableArrayType()) {
if (VAT->getSizeExpr())
return VAT;
}
return 0;
}
const RecordType *Type::getAsRecordType() const {
// If this is directly a reference type, return it.
if (const RecordType *RTy = dyn_cast<RecordType>(this))
return RTy;
// If this is a typedef for an record type, strip the typedef off without
// losing all typedef information.
if (isa<RecordType>(CanonicalType))
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->getKind() == Decl::Struct)
return RT;
}
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (RT->getDecl()->getKind() == Decl::Struct)
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
}
return 0;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->getKind() == Decl::Union)
return RT;
}
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (RT->getDecl()->getKind() == Decl::Union)
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
}
return 0;
}
const ComplexType *Type::getAsComplexType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
return CTy;
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
if (isa<ComplexType>(CanonicalType))
return cast<ComplexType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const VectorType *Type::getAsVectorType() const {
// Are we directly a vector type?
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy;
// If this is a typedef for a vector type, strip the typedef off without
// losing all typedef information.
if (isa<VectorType>(CanonicalType))
return cast<VectorType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const OCUVectorType *Type::getAsOCUVectorType() const {
// Are we directly an OpenCU vector type?
if (const OCUVectorType *VTy = dyn_cast<OCUVectorType>(this))
return VTy;
// If this is a typedef for an OpenCU vector type, strip the typedef off
// without losing all typedef information.
if (isa<OCUVectorType>(CanonicalType))
return cast<OCUVectorType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
bool Type::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
return lBuiltin->getKind() == rBuiltin->getKind();
}
// C99 6.2.7p1: If both are complete types, then the following additional
// requirements apply...FIXME (handle compatibility across source files).
bool Type::tagTypesAreCompatible(QualType lhs, QualType rhs) {
TagDecl *ldecl = cast<TagType>(lhs.getCanonicalType())->getDecl();
TagDecl *rdecl = cast<TagType>(rhs.getCanonicalType())->getDecl();
if (ldecl->getKind() == Decl::Struct && rdecl->getKind() == Decl::Struct) {
if (ldecl->getIdentifier() == rdecl->getIdentifier())
return true;
}
if (ldecl->getKind() == Decl::Union && rdecl->getKind() == Decl::Union) {
if (ldecl->getIdentifier() == rdecl->getIdentifier())
return true;
}
return false;
}
bool Type::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
// C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
// identically qualified and both shall be pointers to compatible types.
if (lhs.getQualifiers() != rhs.getQualifiers())
return false;
QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
return typesAreCompatible(ltype, rtype);
}
// C++ 5.17p6: When the left opperand of an assignment operator denotes a
// reference to T, the operation assigns to the object of type T denoted by the
// reference.
bool Type::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = lhs;
if (lhs->isReferenceType())
ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
QualType rtype = rhs;
if (rhs->isReferenceType())
rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
return typesAreCompatible(ltype, rtype);
}
bool Type::functionTypesAreCompatible(QualType lhs, QualType rhs) {
const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
// first check the return types (common between C99 and K&R).
if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
return false;
if (lproto && rproto) { // two C99 style function prototypes
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
if (lproto_nargs != rproto_nargs)
return false;
// both prototypes have the same number of arguments.
if ((lproto->isVariadic() && !rproto->isVariadic()) ||
(rproto->isVariadic() && !lproto->isVariadic()))
return false;
// The use of ellipsis agree...now check the argument types.
for (unsigned i = 0; i < lproto_nargs; i++)
if (!typesAreCompatible(lproto->getArgType(i), rproto->getArgType(i)))
return false;
return true;
}
if (!lproto && !rproto) // two K&R style function decls, nothing to do.
return true;
// we have a mixture of K&R style with C99 prototypes
const FunctionTypeProto *proto = lproto ? lproto : rproto;
if (proto->isVariadic())
return false;
// FIXME: Each parameter type T in the prototype must be compatible with the
// type resulting from applying the usual argument conversions to T.
return true;
}
bool Type::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = cast<ArrayType>(lhs.getCanonicalType())->getElementType();
QualType rtype = cast<ArrayType>(rhs.getCanonicalType())->getElementType();
if (!typesAreCompatible(ltype, rtype))
return false;
// FIXME: If both types specify constant sizes, then the sizes must also be
// the same. Even if the sizes are the same, GCC produces an error.
return true;
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool Type::typesAreCompatible(QualType lhs, QualType rhs) {
QualType lcanon = lhs.getCanonicalType();
QualType rcanon = rhs.getCanonicalType();
// If two types are identical, they are are compatible
if (lcanon == rcanon)
return true;
// If the canonical type classes don't match, they can't be compatible
if (lcanon->getTypeClass() != rcanon->getTypeClass())
return false;
switch (lcanon->getTypeClass()) {
case Type::Pointer:
return pointerTypesAreCompatible(lcanon, rcanon);
case Type::Reference:
return referenceTypesAreCompatible(lcanon, rcanon);
case Type::ConstantArray:
case Type::VariableArray:
return arrayTypesAreCompatible(lcanon, rcanon);
case Type::FunctionNoProto:
case Type::FunctionProto:
return functionTypesAreCompatible(lcanon, rcanon);
case Type::Tagged: // handle structures, unions
return tagTypesAreCompatible(lcanon, rcanon);
case Type::Builtin:
return builtinTypesAreCompatible(lcanon, rcanon);
default:
assert(0 && "unexpected type");
}
return true; // should never get here...
}
bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongLong;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
return false;
}
bool Type::isEnumeralType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->getKind() == Decl::Enum;
return false;
}
bool Type::isBooleanType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S;
return false;
}
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation, or a vector of signed
/// integer element type.
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::LongLong;
}
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (const EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl()))
return ED->getIntegerType()->isSignedIntegerType();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerType();
return false;
}
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation, or a vector of unsigned integer
/// element type.
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::ULongLong;
}
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (const EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl()))
return ED->getIntegerType()->isUnsignedIntegerType();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerType();
return false;
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
return false;
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealFloatingType();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->getKind() == Decl::Enum;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealType();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
}
bool Type::isScalarType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
return false;
}
return isa<PointerType>(CanonicalType) || isa<ComplexType>(CanonicalType) ||
isa<VectorType>(CanonicalType);
}
bool Type::isAggregateType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
if (TT->getDecl()->getKind() == Decl::Struct)
return true;
return false;
}
return CanonicalType->getTypeClass() == ConstantArray ||
CanonicalType->getTypeClass() == VariableArray;
}
// The only variable size types are auto arrays within a function. Structures
// cannot contain a VLA member. They can have a flexible array member, however
// the structure is still constant size (C99 6.7.2.1p16).
bool Type::isConstantSizeType(ASTContext &Ctx, SourceLocation *loc) const {
if (isa<VariableArrayType>(CanonicalType))
return false;
return true;
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Tagged:
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
case VariableArray:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return cast<VariableArrayType>(CanonicalType)->getSizeExpr() == 0;
}
}
bool Type::isPromotableIntegerType() const {
const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
if (!BT) return false;
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
return true;
default:
return false;
}
}
const char *BuiltinType::getName() const {
switch (getKind()) {
default: assert(0 && "Unknown builtin type!");
case Void: return "void";
case Bool: return "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
}
}
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys,
unsigned NumArgs, bool isVariadic) {
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
ID.AddInteger(isVariadic);
}
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic());
}
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consequtive typedefs. This returns the
/// sum of the type qualifiers, so if you have:
/// typedef const int A;
/// typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
///
QualType TypedefType::LookThroughTypedefs() const {
// Usually, there is only a single level of typedefs, be fast in that case.
QualType FirstType = getDecl()->getUnderlyingType();
if (!isa<TypedefType>(FirstType))
return FirstType;
// Otherwise, do the fully general loop.
unsigned TypeQuals = 0;
const TypedefType *TDT = this;
while (1) {
QualType CurType = TDT->getDecl()->getUnderlyingType();
TypeQuals |= CurType.getQualifiers();
TDT = dyn_cast<TypedefType>(CurType);
if (TDT == 0)
return QualType(CurType.getTypePtr(), TypeQuals);
}
}
bool RecordType::classof(const Type *T) {
if (const TagType *TT = dyn_cast<TagType>(T))
return isa<RecordDecl>(TT->getDecl());
return false;
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
void QualType::dump(const char *msg) const {
std::string R = "foo";
getAsStringInternal(R);
if (msg)
fprintf(stderr, "%s: %s\n", msg, R.c_str());
else
fprintf(stderr, "%s\n", R.c_str());
}
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
// Note: funkiness to ensure we get a space only between quals.
bool NonePrinted = true;
if (TypeQuals & QualType::Const)
S += "const", NonePrinted = false;
if (TypeQuals & QualType::Volatile)
S += (NonePrinted+" volatile"), NonePrinted = false;
if (TypeQuals & QualType::Restrict)
S += (NonePrinted+" restrict"), NonePrinted = false;
}
void QualType::getAsStringInternal(std::string &S) const {
if (isNull()) {
S += "NULL TYPE\n";
return;
}
// Print qualifiers as appropriate.
unsigned TQ = getQualifiers();
if (TQ) {
std::string TQS;
AppendTypeQualList(TQS, TQ);
if (!S.empty())
S = TQS + ' ' + S;
else
S = TQS;
}
getTypePtr()->getAsStringInternal(S);
}
void BuiltinType::getAsStringInternal(std::string &S) const {
if (S.empty()) {
S = getName();
} else {
// Prefix the basic type, e.g. 'int X'.
S = ' ' + S;
S = getName() + S;
}
}
void ComplexType::getAsStringInternal(std::string &S) const {
ElementType->getAsStringInternal(S);
S = "_Complex " + S;
}
void PointerType::getAsStringInternal(std::string &S) const {
S = '*' + S;
// Handle things like 'int (*A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(PointeeType.getTypePtr()))
S = '(' + S + ')';
PointeeType.getAsStringInternal(S);
}
void ReferenceType::getAsStringInternal(std::string &S) const {
S = '&' + S;
// Handle things like 'int (&A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(ReferenceeType.getTypePtr()))
S = '(' + S + ')';
ReferenceeType.getAsStringInternal(S);
}
void ConstantArrayType::getAsStringInternal(std::string &S) const {
S += '[';
S += llvm::utostr(getSize().getZExtValue());
S += ']';
getElementType().getAsStringInternal(S);
}
void VariableArrayType::getAsStringInternal(std::string &S) const {
S += '[';
if (getIndexTypeQualifier()) {
AppendTypeQualList(S, getIndexTypeQualifier());
S += ' ';
}
if (getSizeModifier() == Static)
S += "static";
else if (getSizeModifier() == Star)
S += '*';
if (getSizeExpr()) {
std::ostringstream s;
getSizeExpr()->printPretty(s);
S += s.str();
}
S += ']';
getElementType().getAsStringInternal(S);
}
void VectorType::getAsStringInternal(std::string &S) const {
S += " __attribute__((vector_size(";
// FIXME: should multiply by element size somehow.
S += llvm::utostr_32(NumElements*4); // convert back to bytes.
S += ")))";
ElementType.getAsStringInternal(S);
}
void OCUVectorType::getAsStringInternal(std::string &S) const {
S += " __attribute__((ocu_vector_type(";
S += llvm::utostr_32(NumElements);
S += ")))";
ElementType.getAsStringInternal(S);
}
void TypeOfExpr::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
InnerString = ' ' + InnerString;
std::ostringstream s;
getUnderlyingExpr()->printPretty(s);
InnerString = "typeof(" + s.str() + ")" + InnerString;
}
void TypeOfType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
InnerString = ' ' + InnerString;
std::string Tmp;
getUnderlyingType().getAsStringInternal(Tmp);
InnerString = "typeof(" + Tmp + ")" + InnerString;
}
void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "()";
getResultType().getAsStringInternal(S);
}
void FunctionTypeProto::getAsStringInternal(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "(";
std::string Tmp;
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
if (i) S += ", ";
getArgType(i).getAsStringInternal(Tmp);
S += Tmp;
Tmp.clear();
}
if (isVariadic()) {
if (getNumArgs())
S += ", ";
S += "...";
} else if (getNumArgs() == 0) {
// Do not emit int() if we have a proto, emit 'int(void)'.
S += "void";
}
S += ")";
getResultType().getAsStringInternal(S);
}
void TypedefType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void ObjcInterfaceType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void TagType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
const char *Kind = getDecl()->getKindName();
const char *ID;
if (const IdentifierInfo *II = getDecl()->getIdentifier())
ID = II->getName();
else
ID = "<anonymous>";
InnerString = std::string(Kind) + " " + ID + InnerString;
}

View File

@@ -1,98 +0,0 @@
//==- DeadStores.cpp - Check for stores to dead variables --------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This files defines a DeadStores, a flow-sensitive checker that looks for
// stores to variables that are no longer live.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Expr.h"
#include "clang/Analysis/LocalCheckers.h"
#include "clang/Analysis/LiveVariables.h"
#include "clang/AST/CFG.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/ASTContext.h"
using namespace clang;
namespace {
class DeadStoreObserver : public LiveVariablesObserver {
Preprocessor& PP;
ASTContext Ctx;
public:
DeadStoreObserver(Preprocessor& pp) :
PP(pp), Ctx(PP.getSourceManager(), PP.getTargetInfo(),
PP.getIdentifierTable()) {
}
virtual ~DeadStoreObserver() {}
virtual void ObserveStmt(Stmt* S, LiveVariables& L, llvm::BitVector& Live) {
if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
// Is this an assignment?
if (!B->isAssignmentOp())
return;
// Is this an assignment to a variable?
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()))
// Is the variable live?
if (!L.isLive(Live,cast<VarDecl>(DR->getDecl()))) {
SourceRange R = B->getRHS()->getSourceRange();
PP.getDiagnostics().Report(DR->getSourceRange().Begin(),
diag::warn_dead_store, 0, 0,
&R,1);
}
}
else if(DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
// Iterate through the decls. Warn if any of them (which have
// initializers) are not live.
for (VarDecl* V = cast<VarDecl>(DS->getDecl()); V != NULL ;
V = cast_or_null<VarDecl>(V->getNextDeclarator()))
if (Expr* E = V->getInit())
if (!L.isLive(Live,V))
// Special case: check for initializations with constants.
//
// e.g. : int x = 0;
//
// If x is EVER assigned a new value later, don't issue
// a warning. This is because such initialization can be
// due to defensive programming.
if (!E->isConstantExpr(Ctx,NULL) ||
L.getVarInfo(V).Kills.size() == 0) {
// Flag a warning.
SourceRange R = E->getSourceRange();
PP.getDiagnostics().Report(V->getLocation(),
diag::warn_dead_store, 0, 0,
&R,1);
}
}
}
};
} // end anonymous namespace
namespace clang {
void CheckDeadStores(CFG& cfg, LiveVariables& L, Preprocessor& PP) {
DeadStoreObserver A(PP);
for (CFG::iterator I = cfg.begin(), E = cfg.end(); I != E; ++I)
L.runOnBlock(&(*I),&A);
}
void CheckDeadStores(CFG& cfg, Preprocessor& PP) {
LiveVariables L;
L.runOnCFG(cfg);
CheckDeadStores(cfg,L,PP);
}
} // end namespace clang

View File

@@ -1,474 +0,0 @@
//==- LiveVariables.cpp - Live Variable Analysis for Source CFGs -*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Live Variables analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/LiveVariables.h"
#include "clang/Basic/SourceManager.h"
#include "clang/AST/Expr.h"
#include "clang/AST/CFG.h"
#include "clang/Analysis/DataflowStmtVisitor.h"
#include "clang/Lex/IdentifierTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <string.h>
#include <stdio.h>
using namespace clang;
//===----------------------------------------------------------------------===//
// RegisterDecls - Utility class to create VarInfo objects for all
// Decls referenced in a function.
//
namespace {
class RegisterDecls : public StmtVisitor<RegisterDecls,void> {
LiveVariables& L;
const CFG& cfg;
public:
RegisterDecls(LiveVariables& l, const CFG& c)
: L(l), cfg(c) {}
void VisitStmt(Stmt* S);
void VisitDeclRefExpr(DeclRefExpr* DR);
void VisitDeclStmt(DeclStmt* DS);
void Register(Decl* D);
void RegisterDeclChain(Decl* D);
void RegisterUsedDecls();
};
void RegisterDecls::VisitStmt(Stmt* S) {
for (Stmt::child_iterator I = S->child_begin(),E = S->child_end(); I != E;++I)
Visit(*I);
}
void RegisterDecls::VisitDeclRefExpr(DeclRefExpr* DR) {
RegisterDeclChain(DR->getDecl());
}
void RegisterDecls::VisitDeclStmt(DeclStmt* DS) {
RegisterDeclChain(DS->getDecl());
}
void RegisterDecls::RegisterDeclChain(Decl* D) {
for (; D != NULL ; D = D->getNextDeclarator())
Register(D);
}
void RegisterDecls::Register(Decl* D) {
if (VarDecl* V = dyn_cast<VarDecl>(D)) {
LiveVariables::VPair& VP = L.getVarInfoMap()[V];
VP.V.AliveBlocks.resize(cfg.getNumBlockIDs());
VP.Idx = L.getNumDecls()++;
}
}
void RegisterDecls::RegisterUsedDecls() {
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI)
for (CFGBlock::const_iterator SI=BI->begin(),SE = BI->end();SI != SE;++SI)
Visit(const_cast<Stmt*>(*SI));
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// WorkList - Data structure representing the liveness algorithm worklist.
//
namespace {
class WorkListTy {
typedef llvm::SmallPtrSet<const CFGBlock*,20> BlockSet;
BlockSet wlist;
public:
void enqueue(const CFGBlock* B) { wlist.insert(B); }
const CFGBlock* dequeue() {
assert (!wlist.empty());
const CFGBlock* B = *wlist.begin();
wlist.erase(B);
return B;
}
bool isEmpty() const { return wlist.empty(); }
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// TFuncs
//
namespace {
class LivenessTFuncs : public DataflowStmtVisitor<LivenessTFuncs,
dataflow::backward_analysis_tag> {
LiveVariables& L;
llvm::BitVector Live;
llvm::BitVector KilledAtLeastOnce;
Stmt* CurrentStmt;
const CFGBlock* CurrentBlock;
bool blockPreviouslyProcessed;
LiveVariablesObserver* Observer;
public:
LivenessTFuncs(LiveVariables& l, LiveVariablesObserver* A = NULL)
: L(l), CurrentStmt(NULL), CurrentBlock(NULL),
blockPreviouslyProcessed(false), Observer(A) {
Live.resize(l.getNumDecls());
KilledAtLeastOnce.resize(l.getNumDecls());
}
void VisitDeclRefExpr(DeclRefExpr* DR);
void VisitBinaryOperator(BinaryOperator* B);
void VisitAssign(BinaryOperator* B);
void VisitDeclStmt(DeclStmt* DS);
void VisitUnaryOperator(UnaryOperator* U);
void ObserveStmt(Stmt* S);
unsigned getIdx(const VarDecl* D) {
LiveVariables::VarInfoMap& V = L.getVarInfoMap();
LiveVariables::VarInfoMap::iterator I = V.find(D);
assert (I != V.end());
return I->second.Idx;
}
bool ProcessBlock(const CFGBlock* B);
llvm::BitVector* getBlockEntryLiveness(const CFGBlock* B);
LiveVariables::VarInfo& KillVar(VarDecl* D);
};
void LivenessTFuncs::ObserveStmt(Stmt* S) {
if (Observer) Observer->ObserveStmt(S,L,Live);
}
void LivenessTFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
// Register a use of the variable.
if (VarDecl* V = dyn_cast<VarDecl>(DR->getDecl()))
Live.set(getIdx(V));
}
void LivenessTFuncs::VisitBinaryOperator(BinaryOperator* B) {
if (B->isAssignmentOp()) VisitAssign(B);
else VisitStmt(B);
}
void LivenessTFuncs::VisitUnaryOperator(UnaryOperator* U) {
switch (U->getOpcode()) {
case UnaryOperator::PostInc:
case UnaryOperator::PostDec:
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
case UnaryOperator::AddrOf:
// Walk through the subexpressions, blasting through ParenExprs until
// we either find a DeclRefExpr or some non-DeclRefExpr expression.
for (Stmt* S = U->getSubExpr() ; ; ) {
if (ParenExpr* P = dyn_cast<ParenExpr>(S)) {
S = P->getSubExpr();
continue;
}
else if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S)) {
// Treat the --/++/& operator as a kill.
LiveVariables::VarInfo& V =
KillVar(cast<VarDecl>(DR->getDecl()));
if (!blockPreviouslyProcessed)
V.AddKill(CurrentStmt,DR);
VisitDeclRefExpr(DR);
}
else Visit(S);
break;
}
break;
default:
Visit(U->getSubExpr());
break;
}
}
LiveVariables::VarInfo& LivenessTFuncs::KillVar(VarDecl* D) {
LiveVariables::VarInfoMap::iterator I = L.getVarInfoMap().find(D);
assert (I != L.getVarInfoMap().end() &&
"Declaration not managed by variable map in LiveVariables");
// Mark the variable dead, and remove the current block from
// the set of blocks where the variable may be alive the entire time.
Live.reset(I->second.Idx);
I->second.V.AliveBlocks.reset(CurrentBlock->getBlockID());
return I->second.V;
}
void LivenessTFuncs::VisitAssign(BinaryOperator* B) {
// Check if we are assigning to a variable.
Stmt* LHS = B->getLHS();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
LiveVariables::VarInfo& V = KillVar(cast<VarDecl>(DR->getDecl()));
// We only need to register kills once, so we check if this block
// has been previously processed.
if (!blockPreviouslyProcessed)
V.AddKill(CurrentStmt,DR);
if (B->getOpcode() != BinaryOperator::Assign)
Visit(LHS);
}
else
Visit(LHS);
Visit(B->getRHS());
}
void LivenessTFuncs::VisitDeclStmt(DeclStmt* DS) {
// Declarations effectively "kill" a variable since they cannot possibly
// be live before they are declared. Declarations, however, are not kills
// in the sense that the value is obliterated, so we do not register
// DeclStmts as a "kill site" for a variable.
for (Decl* D = DS->getDecl(); D != NULL ; D = D->getNextDeclarator())
KillVar(cast<VarDecl>(D));
}
llvm::BitVector* LivenessTFuncs::getBlockEntryLiveness(const CFGBlock* B) {
LiveVariables::BlockLivenessMap& BMap = L.getLiveAtBlockEntryMap();
LiveVariables::BlockLivenessMap::iterator I = BMap.find(B);
return (I == BMap.end()) ? NULL : &(I->second);
}
bool LivenessTFuncs::ProcessBlock(const CFGBlock* B) {
CurrentBlock = B;
Live.reset();
KilledAtLeastOnce.reset();
// Check if this block has been previously processed.
LiveVariables::BlockLivenessMap& BMap = L.getLiveAtBlockEntryMap();
LiveVariables::BlockLivenessMap::iterator BI = BMap.find(B);
blockPreviouslyProcessed = BI != BMap.end();
// Merge liveness information from all predecessors.
for (CFGBlock::const_succ_iterator I=B->succ_begin(),E=B->succ_end();I!=E;++I)
if (llvm::BitVector* V = getBlockEntryLiveness(*I))
Live |= *V;
if (Observer)
Observer->ObserveBlockExit(B,L,Live);
// Tentatively mark all variables alive at the end of the current block
// as being alive during the whole block. We then cull these out as
// we process the statements of this block.
for (LiveVariables::VarInfoMap::iterator
I=L.getVarInfoMap().begin(), E=L.getVarInfoMap().end(); I != E; ++I)
if (Live[I->second.Idx])
I->second.V.AliveBlocks.set(B->getBlockID());
// Visit the statements in reverse order;
VisitBlock(B);
// Compare the computed "Live" values with what we already have
// for the entry to this block.
bool hasChanged = false;
if (!blockPreviouslyProcessed) {
// We have not previously calculated liveness information for this block.
// Lazily instantiate a bitvector, and copy the bits from Live.
hasChanged = true;
llvm::BitVector& V = BMap[B];
V.resize(L.getNumDecls());
V = Live;
}
else if (BI->second != Live) {
hasChanged = true;
BI->second = Live;
}
return hasChanged;
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// runOnCFG - Method to run the actual liveness computation.
//
void LiveVariables::runOnCFG(const CFG& cfg, LiveVariablesObserver* Observer) {
// Scan a CFG for DeclRefStmts. For each one, create a VarInfo object.
{
RegisterDecls R(*this,cfg);
R.RegisterUsedDecls();
}
// Create the worklist and enqueue the exit block.
WorkListTy WorkList;
WorkList.enqueue(&cfg.getExit());
// Create the state for transfer functions.
LivenessTFuncs TF(*this,Observer);
// Process the worklist until it is empty.
while (!WorkList.isEmpty()) {
const CFGBlock* B = WorkList.dequeue();
if (TF.ProcessBlock(B))
for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
I != E; ++I)
WorkList.enqueue(*I);
}
// Go through each block and reserve a bitvector. This is needed if
// a block was never visited by the worklist algorithm.
for (CFG::const_iterator I = cfg.begin(), E = cfg.end(); I != E; ++I)
LiveAtBlockEntryMap[&(*I)].resize(NumDecls);
}
void LiveVariables::runOnBlock(const CFGBlock* B,
LiveVariablesObserver* Observer)
{
LivenessTFuncs TF(*this,Observer);
TF.ProcessBlock(B);
}
//===----------------------------------------------------------------------===//
// liveness queries
//
bool LiveVariables::isLive(const CFGBlock* B, const VarDecl* D) const {
BlockLivenessMap::const_iterator I = LiveAtBlockEntryMap.find(B);
assert (I != LiveAtBlockEntryMap.end());
VarInfoMap::const_iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
return I->second[VI->second.Idx];
}
bool LiveVariables::isLive(llvm::BitVector& Live, const VarDecl* D) const {
VarInfoMap::const_iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
return Live[VI->second.Idx];
}
bool LiveVariables::KillsVar(const Stmt* S, const VarDecl* D) const {
VarInfoMap::const_iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
for (VarInfo::KillsSet::const_iterator
I = VI->second.V.Kills.begin(), E = VI->second.V.Kills.end(); I!=E;++I)
if (I->first == S)
return true;
return false;
}
LiveVariables::VarInfo& LiveVariables::getVarInfo(const VarDecl* D) {
VarInfoMap::iterator VI = VarInfos.find(D);
assert (VI != VarInfos.end());
return VI->second.V;
}
const LiveVariables::VarInfo& LiveVariables::getVarInfo(const VarDecl* D) const{
return const_cast<LiveVariables*>(this)->getVarInfo(D);
}
//===----------------------------------------------------------------------===//
// Defaults for LiveVariablesObserver
void LiveVariablesObserver::ObserveStmt(Stmt* S, LiveVariables& L,
llvm::BitVector& V) {}
void LiveVariablesObserver::ObserveBlockExit(const CFGBlock* B,
LiveVariables& L,
llvm::BitVector& V) {}
//===----------------------------------------------------------------------===//
// printing liveness state for debugging
//
void LiveVariables::dumpLiveness(const llvm::BitVector& V,
SourceManager& SM) const {
for (VarInfoMap::iterator I = VarInfos.begin(), E=VarInfos.end(); I!=E; ++I) {
if (V[I->second.Idx]) {
SourceLocation PhysLoc = SM.getPhysicalLoc(I->first->getLocation());
fprintf(stderr, " %s <%s:%u:%u>\n",
I->first->getIdentifier()->getName(),
SM.getSourceName(PhysLoc),
SM.getLineNumber(PhysLoc),
SM.getColumnNumber(PhysLoc));
}
}
}
void LiveVariables::dumpBlockLiveness(SourceManager& M) const {
for (BlockLivenessMap::iterator I = LiveAtBlockEntryMap.begin(),
E = LiveAtBlockEntryMap.end();
I != E; ++I) {
fprintf(stderr,
"\n[ B%d (live variables at block entry) ]\n",
I->first->getBlockID());
dumpLiveness(I->second,M);
}
fprintf(stderr,"\n");
}
void LiveVariables::dumpVarLiveness(SourceManager& SM) const {
for (VarInfoMap::iterator I = VarInfos.begin(), E=VarInfos.end(); I!=E; ++I) {
SourceLocation PhysLoc = SM.getPhysicalLoc(I->first->getLocation());
fprintf(stderr, "[ %s <%s:%u:%u> ]\n",
I->first->getIdentifier()->getName(),
SM.getSourceName(PhysLoc),
SM.getLineNumber(PhysLoc),
SM.getColumnNumber(PhysLoc));
I->second.V.Dump(SM);
}
}
void LiveVariables::VarInfo::Dump(SourceManager& SM) const {
fprintf(stderr," Blocks Alive:");
for (unsigned i = 0; i < AliveBlocks.size(); ++i) {
if (i % 5 == 0)
fprintf(stderr,"\n ");
fprintf(stderr," B%d", i);
}
fprintf(stderr,"\n Kill Sites:\n");
for (KillsSet::const_iterator I = Kills.begin(), E = Kills.end(); I!=E; ++I) {
SourceLocation PhysLoc =
SM.getPhysicalLoc(I->second->getSourceRange().Begin());
fprintf(stderr, " <%s:%u:%u>\n",
SM.getSourceName(PhysLoc),
SM.getLineNumber(PhysLoc),
SM.getColumnNumber(PhysLoc));
}
fprintf(stderr,"\n");
}

View File

@@ -1,22 +0,0 @@
##===- clang/CodeGen/Makefile ------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Ted Kremenek and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements analyses built on top of source-level CFGs.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME := clangAnalysis
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,145 +0,0 @@
//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Diagnostic-related interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include <cassert>
using namespace clang;
/// Flag values for diagnostics.
enum {
// Diagnostic classes.
NOTE = 0x01,
WARNING = 0x02,
EXTENSION = 0x03,
ERROR = 0x04,
class_mask = 0x07
};
/// DiagnosticFlags - A set of flags, or'd together, that describe the
/// diagnostic.
static unsigned char DiagnosticFlags[] = {
#define DIAG(ENUM,FLAGS,DESC) FLAGS,
#include "clang/Basic/DiagnosticKinds.def"
0
};
/// getDiagClass - Return the class field of the diagnostic.
///
static unsigned getDiagClass(unsigned DiagID) {
assert(DiagID < diag::NUM_DIAGNOSTICS && "Diagnostic ID out of range!");
return DiagnosticFlags[DiagID] & class_mask;
}
/// DiagnosticText - An english message to print for the diagnostic. These
/// should be localized.
static const char * const DiagnosticText[] = {
#define DIAG(ENUM,FLAGS,DESC) DESC,
#include "clang/Basic/DiagnosticKinds.def"
0
};
Diagnostic::Diagnostic(DiagnosticClient &client) : Client(client) {
WarningsAsErrors = false;
WarnOnExtensions = false;
ErrorOnExtensions = false;
// Clear all mappings, setting them to MAP_DEFAULT.
memset(DiagMappings, 0, sizeof(DiagMappings));
ErrorOccurred = false;
NumDiagnostics = 0;
NumErrors = 0;
}
/// isNoteWarningOrExtension - Return true if the unmapped diagnostic level of
/// the specified diagnostic ID is a Note, Warning, or Extension.
bool Diagnostic::isNoteWarningOrExtension(unsigned DiagID) {
return getDiagClass(DiagID) < ERROR;
}
/// getDescription - Given a diagnostic ID, return a description of the
/// issue.
const char *Diagnostic::getDescription(unsigned DiagID) {
assert(DiagID < diag::NUM_DIAGNOSTICS && "Diagnostic ID out of range!");
return DiagnosticText[DiagID];
}
/// getDiagnosticLevel - Based on the way the client configured the Diagnostic
/// object, classify the specified diagnostic ID into a Level, consumable by
/// the DiagnosticClient.
Diagnostic::Level Diagnostic::getDiagnosticLevel(unsigned DiagID) const {
unsigned DiagClass = getDiagClass(DiagID);
// Specific non-error diagnostics may be mapped to various levels from ignored
// to error.
if (DiagClass < ERROR) {
switch (getDiagnosticMapping((diag::kind)DiagID)) {
case diag::MAP_DEFAULT: break;
case diag::MAP_IGNORE: return Ignored;
case diag::MAP_WARNING: DiagClass = WARNING; break;
case diag::MAP_ERROR: DiagClass = ERROR; break;
}
}
// Map diagnostic classes based on command line argument settings.
if (DiagClass == EXTENSION) {
if (ErrorOnExtensions)
DiagClass = ERROR;
else if (WarnOnExtensions)
DiagClass = WARNING;
else
return Ignored;
}
// If warnings are to be treated as errors, indicate this as such.
if (DiagClass == WARNING && WarningsAsErrors)
DiagClass = ERROR;
switch (DiagClass) {
default: assert(0 && "Unknown diagnostic class!");
case NOTE: return Diagnostic::Note;
case WARNING: return Diagnostic::Warning;
case ERROR: return Diagnostic::Error;
}
}
/// Report - Issue the message to the client. If the client wants us to stop
/// compilation, return true, otherwise return false. DiagID is a member of
/// the diag::kind enum.
void Diagnostic::Report(SourceLocation Pos, unsigned DiagID,
const std::string *Strs, unsigned NumStrs,
const SourceRange *Ranges, unsigned NumRanges) {
// Figure out the diagnostic level of this message.
Diagnostic::Level DiagLevel = getDiagnosticLevel(DiagID);
// If the client doesn't care about this message, don't issue it.
if (DiagLevel == Diagnostic::Ignored)
return;
if (DiagLevel >= Diagnostic::Error) {
ErrorOccurred = true;
++NumErrors;
}
// Are we going to ignore this diagnosic?
if (Client.IgnoreDiagnostic(DiagLevel, Pos))
return;
// Finally, report it.
Client.HandleDiagnostic(DiagLevel, Pos, (diag::kind)DiagID, Strs, NumStrs,
Ranges, NumRanges);
++NumDiagnostics;
}
DiagnosticClient::~DiagnosticClient() {}

View File

@@ -1,172 +0,0 @@
//===--- FileManager.cpp - File System Probing and Caching ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the FileManager interface.
//
//===----------------------------------------------------------------------===//
//
// TODO: This should index all interesting directories with dirent calls.
// getdirentries ?
// opendir/readdir_r/closedir ?
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/FileManager.h"
#include "llvm/ADT/SmallString.h"
#include <iostream>
using namespace clang;
// FIXME: Enhance libsystem to support inode and other fields.
#include <sys/stat.h>
#if defined(_MSC_VER)
#define S_ISDIR(s) (_S_IFDIR & s)
#endif
/// NON_EXISTANT_DIR - A special value distinct from null that is used to
/// represent a dir name that doesn't exist on the disk.
#define NON_EXISTANT_DIR reinterpret_cast<DirectoryEntry*>((intptr_t)-1)
/// getDirectory - Lookup, cache, and verify the specified directory. This
/// returns null if the directory doesn't exist.
///
const DirectoryEntry *FileManager::getDirectory(const char *NameStart,
const char *NameEnd) {
++NumDirLookups;
llvm::StringMapEntry<DirectoryEntry *> &NamedDirEnt =
DirEntries.GetOrCreateValue(NameStart, NameEnd);
// See if there is already an entry in the map.
if (NamedDirEnt.getValue())
return NamedDirEnt.getValue() == NON_EXISTANT_DIR
? 0 : NamedDirEnt.getValue();
++NumDirCacheMisses;
// By default, initialize it to invalid.
NamedDirEnt.setValue(NON_EXISTANT_DIR);
// Get the null-terminated directory name as stored as the key of the
// DirEntries map.
const char *InterndDirName = NamedDirEnt.getKeyData();
// Check to see if the directory exists.
struct stat StatBuf;
if (stat(InterndDirName, &StatBuf) || // Error stat'ing.
!S_ISDIR(StatBuf.st_mode)) // Not a directory?
return 0;
// It exists. See if we have already opened a directory with the same inode.
// This occurs when one dir is symlinked to another, for example.
DirectoryEntry &UDE =
UniqueDirs[std::make_pair(StatBuf.st_dev, StatBuf.st_ino)];
NamedDirEnt.setValue(&UDE);
if (UDE.getName()) // Already have an entry with this inode, return it.
return &UDE;
// Otherwise, we don't have this directory yet, add it. We use the string
// key from the DirEntries map as the string.
UDE.Name = InterndDirName;
return &UDE;
}
/// NON_EXISTANT_FILE - A special value distinct from null that is used to
/// represent a filename that doesn't exist on the disk.
#define NON_EXISTANT_FILE reinterpret_cast<FileEntry*>((intptr_t)-1)
/// getFile - Lookup, cache, and verify the specified file. This returns null
/// if the file doesn't exist.
///
const FileEntry *FileManager::getFile(const char *NameStart,
const char *NameEnd) {
++NumFileLookups;
// See if there is already an entry in the map.
llvm::StringMapEntry<FileEntry *> &NamedFileEnt =
FileEntries.GetOrCreateValue(NameStart, NameEnd);
// See if there is already an entry in the map.
if (NamedFileEnt.getValue())
return NamedFileEnt.getValue() == NON_EXISTANT_FILE
? 0 : NamedFileEnt.getValue();
++NumFileCacheMisses;
// By default, initialize it to invalid.
NamedFileEnt.setValue(NON_EXISTANT_FILE);
// Figure out what directory it is in. If the string contains a / in it,
// strip off everything after it.
// FIXME: this logic should be in sys::Path.
const char *SlashPos = NameEnd-1;
while (SlashPos >= NameStart && SlashPos[0] != '/')
--SlashPos;
const DirectoryEntry *DirInfo;
if (SlashPos < NameStart) {
// Use the current directory if file has no path component.
const char *Name = ".";
DirInfo = getDirectory(Name, Name+1);
} else if (SlashPos == NameEnd-1)
return 0; // If filename ends with a /, it's a directory.
else
DirInfo = getDirectory(NameStart, SlashPos);
if (DirInfo == 0) // Directory doesn't exist, file can't exist.
return 0;
// Get the null-terminated file name as stored as the key of the
// FileEntries map.
const char *InterndFileName = NamedFileEnt.getKeyData();
// FIXME: Use the directory info to prune this, before doing the stat syscall.
// FIXME: This will reduce the # syscalls.
// Nope, there isn't. Check to see if the file exists.
struct stat StatBuf;
//std::cerr << "STATING: " << Filename;
if (stat(InterndFileName, &StatBuf) || // Error stat'ing.
S_ISDIR(StatBuf.st_mode)) { // A directory?
// If this file doesn't exist, we leave a null in FileEntries for this path.
//std::cerr << ": Not existing\n";
return 0;
}
//std::cerr << ": exists\n";
// It exists. See if we have already opened a directory with the same inode.
// This occurs when one dir is symlinked to another, for example.
FileEntry &UFE = UniqueFiles[std::make_pair(StatBuf.st_dev, StatBuf.st_ino)];
NamedFileEnt.setValue(&UFE);
if (UFE.getName()) // Already have an entry with this inode, return it.
return &UFE;
// Otherwise, we don't have this directory yet, add it.
// FIXME: Change the name to be a char* that points back to the 'FileEntries'
// key.
UFE.Name = InterndFileName;
UFE.Size = StatBuf.st_size;
UFE.ModTime = StatBuf.st_mtime;
UFE.Dir = DirInfo;
UFE.UID = NextFileUID++;
return &UFE;
}
void FileManager::PrintStats() const {
std::cerr << "\n*** File Manager Stats:\n";
std::cerr << UniqueFiles.size() << " files found, "
<< UniqueDirs.size() << " dirs found.\n";
std::cerr << NumDirLookups << " dir lookups, "
<< NumDirCacheMisses << " dir cache misses.\n";
std::cerr << NumFileLookups << " file lookups, "
<< NumFileCacheMisses << " file cache misses.\n";
//std::cerr << PagesMapped << BytesOfPagesMapped << FSLookups;
}

View File

@@ -1,22 +0,0 @@
##===- clang/Basic/Makefile --------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Chris Lattner and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements the Basic library for the C-Language front-end.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME := clangBasic
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,409 +0,0 @@
//===--- SourceManager.cpp - Track and cache source files -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SourceManager interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/FileManager.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/Path.h"
#include <algorithm>
#include <iostream>
#include <fcntl.h>
using namespace clang;
using namespace SrcMgr;
using llvm::MemoryBuffer;
SourceManager::~SourceManager() {
for (std::map<const FileEntry *, FileInfo>::iterator I = FileInfos.begin(),
E = FileInfos.end(); I != E; ++I) {
delete I->second.Buffer;
delete[] I->second.SourceLineCache;
}
for (std::list<InfoRec>::iterator I = MemBufferInfos.begin(),
E = MemBufferInfos.end(); I != E; ++I) {
delete I->second.Buffer;
delete[] I->second.SourceLineCache;
}
}
// FIXME: REMOVE THESE
#include <unistd.h>
#include <sys/types.h>
#if !defined(_MSC_VER)
#include <sys/uio.h>
#include <sys/fcntl.h>
#else
#include <io.h>
#endif
#include <cerrno>
static const MemoryBuffer *ReadFileFast(const FileEntry *FileEnt) {
#if 0
// FIXME: Reintroduce this and zap this function once the common llvm stuff
// is fast for the small case.
return MemoryBuffer::getFile(FileEnt->getName(), strlen(FileEnt->getName()),
FileEnt->getSize());
#endif
// If the file is larger than some threshold, use 'read', otherwise use mmap.
if (FileEnt->getSize() >= 4096*4)
return MemoryBuffer::getFile(FileEnt->getName(), strlen(FileEnt->getName()),
0, FileEnt->getSize());
MemoryBuffer *SB = MemoryBuffer::getNewUninitMemBuffer(FileEnt->getSize(),
FileEnt->getName());
char *BufPtr = const_cast<char*>(SB->getBufferStart());
#if defined(LLVM_ON_WIN32)
int FD = ::open(FileEnt->getName(), O_RDONLY|O_BINARY);
#else
int FD = ::open(FileEnt->getName(), O_RDONLY);
#endif
if (FD == -1) {
delete SB;
return 0;
}
unsigned BytesLeft = FileEnt->getSize();
while (BytesLeft) {
ssize_t NumRead = ::read(FD, BufPtr, BytesLeft);
if (NumRead != -1) {
BytesLeft -= NumRead;
BufPtr += NumRead;
} else if (errno == EINTR) {
// try again
} else {
// error reading.
close(FD);
delete SB;
return 0;
}
}
close(FD);
return SB;
}
/// getFileInfo - Create or return a cached FileInfo for the specified file.
///
const InfoRec *
SourceManager::getInfoRec(const FileEntry *FileEnt) {
assert(FileEnt && "Didn't specify a file entry to use?");
// Do we already have information about this file?
std::map<const FileEntry *, FileInfo>::iterator I =
FileInfos.lower_bound(FileEnt);
if (I != FileInfos.end() && I->first == FileEnt)
return &*I;
// Nope, get information.
const MemoryBuffer *File = ReadFileFast(FileEnt);
if (File == 0)
return 0;
const InfoRec &Entry =
*FileInfos.insert(I, std::make_pair(FileEnt, FileInfo()));
FileInfo &Info = const_cast<FileInfo &>(Entry.second);
Info.Buffer = File;
Info.SourceLineCache = 0;
Info.NumLines = 0;
return &Entry;
}
/// createMemBufferInfoRec - Create a new info record for the specified memory
/// buffer. This does no caching.
const InfoRec *
SourceManager::createMemBufferInfoRec(const MemoryBuffer *Buffer) {
// Add a new info record to the MemBufferInfos list and return it.
FileInfo FI;
FI.Buffer = Buffer;
FI.SourceLineCache = 0;
FI.NumLines = 0;
MemBufferInfos.push_back(InfoRec(0, FI));
return &MemBufferInfos.back();
}
/// createFileID - Create a new fileID for the specified InfoRec and include
/// position. This works regardless of whether the InfoRec corresponds to a
/// file or some other input source.
unsigned SourceManager::createFileID(const InfoRec *File,
SourceLocation IncludePos) {
// If FileEnt is really large (e.g. it's a large .i file), we may not be able
// to fit an arbitrary position in the file in the FilePos field. To handle
// this, we create one FileID for each chunk of the file that fits in a
// FilePos field.
unsigned FileSize = File->second.Buffer->getBufferSize();
if (FileSize+1 < (1 << SourceLocation::FilePosBits)) {
FileIDs.push_back(FileIDInfo::get(IncludePos, 0, File));
assert(FileIDs.size() < (1 << SourceLocation::FileIDBits) &&
"Ran out of file ID's!");
return FileIDs.size();
}
// Create one FileID for each chunk of the file.
unsigned Result = FileIDs.size()+1;
unsigned ChunkNo = 0;
while (1) {
FileIDs.push_back(FileIDInfo::get(IncludePos, ChunkNo++, File));
if (FileSize+1 < (1 << SourceLocation::FilePosBits)) break;
FileSize -= (1 << SourceLocation::FilePosBits);
}
assert(FileIDs.size() < (1 << SourceLocation::FileIDBits) &&
"Ran out of file ID's!");
return Result;
}
/// getInstantiationLoc - Return a new SourceLocation that encodes the fact
/// that a token from physloc PhysLoc should actually be referenced from
/// InstantiationLoc.
SourceLocation SourceManager::getInstantiationLoc(SourceLocation PhysLoc,
SourceLocation InstantLoc) {
// The specified source location may be a mapped location, due to a macro
// instantiation or #line directive. Strip off this information to find out
// where the characters are actually located.
PhysLoc = getPhysicalLoc(PhysLoc);
// Resolve InstantLoc down to a real logical location.
InstantLoc = getLogicalLoc(InstantLoc);
// If the last macro id is close to the currently requested location, try to
// reuse it. This implements a small cache.
for (int i = MacroIDs.size()-1, e = MacroIDs.size()-6; i >= 0 && i != e; --i){
MacroIDInfo &LastOne = MacroIDs[i];
// The instanitation point and source physloc have to exactly match to reuse
// (for now). We could allow "nearby" instantiations in the future.
if (LastOne.getInstantiationLoc() != InstantLoc ||
LastOne.getPhysicalLoc().getFileID() != PhysLoc.getFileID())
continue;
// Check to see if the physloc of the token came from near enough to reuse.
int PhysDelta = PhysLoc.getRawFilePos() -
LastOne.getPhysicalLoc().getRawFilePos();
if (SourceLocation::isValidMacroPhysOffs(PhysDelta))
return SourceLocation::getMacroLoc(i, PhysDelta, 0);
}
MacroIDs.push_back(MacroIDInfo::get(InstantLoc, PhysLoc));
return SourceLocation::getMacroLoc(MacroIDs.size()-1, 0, 0);
}
/// getCharacterData - Return a pointer to the start of the specified location
/// in the appropriate MemoryBuffer.
const char *SourceManager::getCharacterData(SourceLocation SL) const {
// Note that this is a hot function in the getSpelling() path, which is
// heavily used by -E mode.
SL = getPhysicalLoc(SL);
return getFileInfo(SL.getFileID())->Buffer->getBufferStart() +
getFullFilePos(SL);
}
/// getColumnNumber - Return the column # for the specified file position.
/// this is significantly cheaper to compute than the line number. This returns
/// zero if the column number isn't known.
unsigned SourceManager::getColumnNumber(SourceLocation Loc) const {
unsigned FileID = Loc.getFileID();
if (FileID == 0) return 0;
unsigned FilePos = getFullFilePos(Loc);
const MemoryBuffer *Buffer = getBuffer(FileID);
const char *Buf = Buffer->getBufferStart();
unsigned LineStart = FilePos;
while (LineStart && Buf[LineStart-1] != '\n' && Buf[LineStart-1] != '\r')
--LineStart;
return FilePos-LineStart+1;
}
/// getSourceName - This method returns the name of the file or buffer that
/// the SourceLocation specifies. This can be modified with #line directives,
/// etc.
const char *SourceManager::getSourceName(SourceLocation Loc) const {
unsigned FileID = Loc.getFileID();
if (FileID == 0) return "";
return getFileInfo(FileID)->Buffer->getBufferIdentifier();
}
static void ComputeLineNumbers(FileInfo *FI) DISABLE_INLINE;
static void ComputeLineNumbers(FileInfo *FI) {
const MemoryBuffer *Buffer = FI->Buffer;
// Find the file offsets of all of the *physical* source lines. This does
// not look at trigraphs, escaped newlines, or anything else tricky.
std::vector<unsigned> LineOffsets;
// Line #1 starts at char 0.
LineOffsets.push_back(0);
const unsigned char *Buf = (const unsigned char *)Buffer->getBufferStart();
const unsigned char *End = (const unsigned char *)Buffer->getBufferEnd();
unsigned Offs = 0;
while (1) {
// Skip over the contents of the line.
// TODO: Vectorize this? This is very performance sensitive for programs
// with lots of diagnostics and in -E mode.
const unsigned char *NextBuf = (const unsigned char *)Buf;
while (*NextBuf != '\n' && *NextBuf != '\r' && *NextBuf != '\0')
++NextBuf;
Offs += NextBuf-Buf;
Buf = NextBuf;
if (Buf[0] == '\n' || Buf[0] == '\r') {
// If this is \n\r or \r\n, skip both characters.
if ((Buf[1] == '\n' || Buf[1] == '\r') && Buf[0] != Buf[1])
++Offs, ++Buf;
++Offs, ++Buf;
LineOffsets.push_back(Offs);
} else {
// Otherwise, this is a null. If end of file, exit.
if (Buf == End) break;
// Otherwise, skip the null.
++Offs, ++Buf;
}
}
LineOffsets.push_back(Offs);
// Copy the offsets into the FileInfo structure.
FI->NumLines = LineOffsets.size();
FI->SourceLineCache = new unsigned[LineOffsets.size()];
std::copy(LineOffsets.begin(), LineOffsets.end(), FI->SourceLineCache);
}
/// getLineNumber - Given a SourceLocation, return the physical line number
/// for the position indicated. This requires building and caching a table of
/// line offsets for the MemoryBuffer, so this is not cheap: use only when
/// about to emit a diagnostic.
unsigned SourceManager::getLineNumber(SourceLocation Loc) {
unsigned FileID = Loc.getFileID();
if (FileID == 0) return 0;
FileInfo *FileInfo;
if (LastLineNoFileIDQuery == FileID)
FileInfo = LastLineNoFileInfo;
else
FileInfo = getFileInfo(FileID);
// If this is the first use of line information for this buffer, compute the
/// SourceLineCache for it on demand.
if (FileInfo->SourceLineCache == 0)
ComputeLineNumbers(FileInfo);
// Okay, we know we have a line number table. Do a binary search to find the
// line number that this character position lands on.
unsigned *SourceLineCache = FileInfo->SourceLineCache;
unsigned *SourceLineCacheStart = SourceLineCache;
unsigned *SourceLineCacheEnd = SourceLineCache + FileInfo->NumLines;
unsigned QueriedFilePos = getFullFilePos(Loc)+1;
// If the previous query was to the same file, we know both the file pos from
// that query and the line number returned. This allows us to narrow the
// search space from the entire file to something near the match.
if (LastLineNoFileIDQuery == FileID) {
if (QueriedFilePos >= LastLineNoFilePos) {
SourceLineCache = SourceLineCache+LastLineNoResult-1;
// The query is likely to be nearby the previous one. Here we check to
// see if it is within 5, 10 or 20 lines. It can be far away in cases
// where big comment blocks and vertical whitespace eat up lines but
// contribute no tokens.
if (SourceLineCache+5 < SourceLineCacheEnd) {
if (SourceLineCache[5] > QueriedFilePos)
SourceLineCacheEnd = SourceLineCache+5;
else if (SourceLineCache+10 < SourceLineCacheEnd) {
if (SourceLineCache[10] > QueriedFilePos)
SourceLineCacheEnd = SourceLineCache+10;
else if (SourceLineCache+20 < SourceLineCacheEnd) {
if (SourceLineCache[20] > QueriedFilePos)
SourceLineCacheEnd = SourceLineCache+20;
}
}
}
} else {
SourceLineCacheEnd = SourceLineCache+LastLineNoResult+1;
}
}
// If the spread is large, do a "radix" test as our initial guess, based on
// the assumption that lines average to approximately the same length.
// NOTE: This is currently disabled, as it does not appear to be profitable in
// initial measurements.
if (0 && SourceLineCacheEnd-SourceLineCache > 20) {
unsigned FileLen = FileInfo->SourceLineCache[FileInfo->NumLines-1];
// Take a stab at guessing where it is.
unsigned ApproxPos = FileInfo->NumLines*QueriedFilePos / FileLen;
// Check for -10 and +10 lines.
unsigned LowerBound = std::max(int(ApproxPos-10), 0);
unsigned UpperBound = std::min(ApproxPos+10, FileLen);
// If the computed lower bound is less than the query location, move it in.
if (SourceLineCache < SourceLineCacheStart+LowerBound &&
SourceLineCacheStart[LowerBound] < QueriedFilePos)
SourceLineCache = SourceLineCacheStart+LowerBound;
// If the computed upper bound is greater than the query location, move it.
if (SourceLineCacheEnd > SourceLineCacheStart+UpperBound &&
SourceLineCacheStart[UpperBound] >= QueriedFilePos)
SourceLineCacheEnd = SourceLineCacheStart+UpperBound;
}
unsigned *Pos
= std::lower_bound(SourceLineCache, SourceLineCacheEnd, QueriedFilePos);
unsigned LineNo = Pos-SourceLineCacheStart;
LastLineNoFileIDQuery = FileID;
LastLineNoFileInfo = FileInfo;
LastLineNoFilePos = QueriedFilePos;
LastLineNoResult = LineNo;
return LineNo;
}
/// PrintStats - Print statistics to stderr.
///
void SourceManager::PrintStats() const {
std::cerr << "\n*** Source Manager Stats:\n";
std::cerr << FileInfos.size() << " files mapped, " << MemBufferInfos.size()
<< " mem buffers mapped, " << FileIDs.size()
<< " file ID's allocated.\n";
std::cerr << " " << FileIDs.size() << " normal buffer FileID's, "
<< MacroIDs.size() << " macro expansion FileID's.\n";
unsigned NumLineNumsComputed = 0;
unsigned NumFileBytesMapped = 0;
for (std::map<const FileEntry *, FileInfo>::const_iterator I =
FileInfos.begin(), E = FileInfos.end(); I != E; ++I) {
NumLineNumsComputed += I->second.SourceLineCache != 0;
NumFileBytesMapped += I->second.Buffer->getBufferSize();
}
std::cerr << NumFileBytesMapped << " bytes of files mapped, "
<< NumLineNumsComputed << " files with line #'s computed.\n";
}

View File

@@ -1,248 +0,0 @@
//===--- TargetInfo.cpp - Information about Target machine ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInfo and TargetInfoImpl interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/AST/Builtins.h"
#include "llvm/ADT/StringMap.h"
#include <set>
using namespace clang;
void TargetInfoImpl::ANCHOR() {} // out-of-line virtual method for class.
/// DiagnoseNonPortability - When a use of a non-portable target feature is
/// used, this method emits the diagnostic and marks the translation unit as
/// non-portable.
void TargetInfo::DiagnoseNonPortability(SourceLocation Loc, unsigned DiagKind) {
NonPortable = true;
if (Diag && Loc.isValid()) Diag->Report(Loc, DiagKind);
}
/// GetTargetDefineMap - Get the set of target #defines in an associative
/// collection for easy lookup.
static void GetTargetDefineMap(const TargetInfoImpl *Target,
llvm::StringMap<std::string> &Map) {
std::vector<std::string> PrimaryDefines;
Target->getTargetDefines(PrimaryDefines);
while (!PrimaryDefines.empty()) {
std::string &PrimDefineStr = PrimaryDefines.back();
const char *Str = PrimDefineStr.c_str();
const char *StrEnd = Str+PrimDefineStr.size();
if (const char *Equal = strchr(Str, '=')) {
// Split at the '='.
std::string &Entry = Map.GetOrCreateValue(Str, Equal).getValue();
Entry = std::string(Equal+1, StrEnd);
} else {
// Remember "macroname=1".
std::string &Entry = Map.GetOrCreateValue(Str, StrEnd).getValue();
Entry = "1";
}
PrimaryDefines.pop_back();
}
}
/// getTargetDefines - Appends the target-specific #define values for this
/// target set to the specified buffer.
void TargetInfo::getTargetDefines(std::vector<char> &Buffer) {
// This is tricky in the face of secondary targets. Specifically,
// target-specific #defines that are present and identical across all
// secondary targets are turned into #defines, #defines that are present in
// the primary target but are missing or different in the secondary targets
// are turned into #define_target, and #defines that are not defined in the
// primary, but are defined in a secondary are turned into
// #define_other_target. This allows the preprocessor to correctly track uses
// of target-specific macros.
// Get the set of primary #defines.
llvm::StringMap<std::string> PrimaryDefines;
GetTargetDefineMap(PrimaryTarget, PrimaryDefines);
// If we have no secondary targets, be a bit more efficient.
if (SecondaryTargets.empty()) {
for (llvm::StringMap<std::string>::iterator I =
PrimaryDefines.begin(), E = PrimaryDefines.end(); I != E; ++I) {
// If this define is non-portable, turn it into #define_target, otherwise
// just use #define.
const char *Command = "#define ";
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
// Insert "defname defvalue\n".
const char *KeyStart = I->getKeyData();
const char *KeyEnd = KeyStart + I->getKeyLength();
Buffer.insert(Buffer.end(), KeyStart, KeyEnd);
Buffer.push_back(' ');
Buffer.insert(Buffer.end(), I->getValue().begin(), I->getValue().end());
Buffer.push_back('\n');
}
return;
}
// Get the sets of secondary #defines.
llvm::StringMap<std::string> *SecondaryDefines
= new llvm::StringMap<std::string>[SecondaryTargets.size()];
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i)
GetTargetDefineMap(SecondaryTargets[i], SecondaryDefines[i]);
// Loop over all defines in the primary target, processing them until we run
// out.
for (llvm::StringMap<std::string>::iterator PDI =
PrimaryDefines.begin(), E = PrimaryDefines.end(); PDI != E; ++PDI) {
std::string DefineName(PDI->getKeyData(),
PDI->getKeyData() + PDI->getKeyLength());
std::string DefineValue = PDI->getValue();
// Check to see whether all secondary targets have this #define and whether
// it is to the same value. Remember if not, but remove the #define from
// their collection in any case if they have it.
bool isPortable = true;
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
llvm::StringMap<std::string>::iterator I =
SecondaryDefines[i].find(&DefineName[0],
&DefineName[0]+DefineName.size());
if (I == SecondaryDefines[i].end()) {
// Secondary target doesn't have this #define.
isPortable = false;
} else {
// Secondary target has this define, remember if it disagrees.
if (isPortable)
isPortable = I->getValue() == DefineValue;
// Remove it from the secondary target unconditionally.
SecondaryDefines[i].erase(I);
}
}
// If this define is non-portable, turn it into #define_target, otherwise
// just use #define.
const char *Command = isPortable ? "#define " : "#define_target ";
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
// Insert "defname defvalue\n".
Buffer.insert(Buffer.end(), DefineName.begin(), DefineName.end());
Buffer.push_back(' ');
Buffer.insert(Buffer.end(), DefineValue.begin(), DefineValue.end());
Buffer.push_back('\n');
}
// Now that all of the primary target's defines have been handled and removed
// from the secondary target's define sets, go through the remaining secondary
// target's #defines and taint them.
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
llvm::StringMap<std::string> &Defs = SecondaryDefines[i];
while (!Defs.empty()) {
const char *DefStart = Defs.begin()->getKeyData();
const char *DefEnd = DefStart + Defs.begin()->getKeyLength();
// Insert "#define_other_target defname".
const char *Command = "#define_other_target ";
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
Buffer.insert(Buffer.end(), DefStart, DefEnd);
Buffer.push_back('\n');
// If any other secondary targets have this same define, remove it from
// them to avoid duplicate #define_other_target directives.
for (unsigned j = i+1; j != e; ++j) {
llvm::StringMap<std::string>::iterator I =
SecondaryDefines[j].find(DefStart, DefEnd);
if (I != SecondaryDefines[j].end())
SecondaryDefines[j].erase(I);
}
Defs.erase(Defs.begin());
}
}
delete[] SecondaryDefines;
}
/// ComputeWCharWidth - Determine the width of the wchar_t type for the primary
/// target, diagnosing whether this is non-portable across the secondary
/// targets.
void TargetInfo::ComputeWCharInfo(SourceLocation Loc) {
PrimaryTarget->getWCharInfo(WCharWidth, WCharAlign);
// Check whether this is portable across the secondary targets if the T-U is
// portable so far.
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
unsigned Width, Align;
SecondaryTargets[i]->getWCharInfo(Width, Align);
if (Width != WCharWidth || Align != WCharAlign)
return DiagnoseNonPortability(Loc, diag::port_wchar_t);
}
}
/// getTargetBuiltins - Return information about target-specific builtins for
/// the current primary target, and info about which builtins are non-portable
/// across the current set of primary and secondary targets.
void TargetInfo::getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords,
std::vector<const char *> &NPortable) const {
// Get info about what actual builtins we will expose.
PrimaryTarget->getTargetBuiltins(Records, NumRecords);
if (SecondaryTargets.empty()) return;
// Compute the set of non-portable builtins.
// Start by computing a mapping from the primary target's builtins to their
// info records for efficient lookup.
llvm::StringMap<const Builtin::Info*> PrimaryRecs;
for (unsigned i = 0, e = NumRecords; i != e; ++i) {
const char *BIName = Records[i].Name;
PrimaryRecs.GetOrCreateValue(BIName, BIName+strlen(BIName)).getValue()
= Records+i;
}
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
// Get the builtins for this secondary target.
const Builtin::Info *Records2nd;
unsigned NumRecords2nd;
SecondaryTargets[i]->getTargetBuiltins(Records2nd, NumRecords2nd);
// Remember all of the secondary builtin names.
std::set<std::string> BuiltinNames2nd;
for (unsigned j = 0, e = NumRecords2nd; j != e; ++j) {
BuiltinNames2nd.insert(Records2nd[j].Name);
// Check to see if the primary target has this builtin.
llvm::StringMap<const Builtin::Info*>::iterator I =
PrimaryRecs.find(Records2nd[j].Name,
Records2nd[j].Name+strlen(Records2nd[j].Name));
if (I != PrimaryRecs.end()) {
const Builtin::Info *PrimBI = I->getValue();
// If does. If they are not identical, mark the builtin as being
// non-portable.
if (Records2nd[j] != *PrimBI)
NPortable.push_back(PrimBI->Name);
} else {
// The primary target doesn't have this, it is non-portable.
NPortable.push_back(Records2nd[j].Name);
}
}
// Now that we checked all the secondary builtins, check to see if the
// primary target has any builtins that the secondary one doesn't. If so,
// then those are non-portable.
for (unsigned j = 0, e = NumRecords; j != e; ++j) {
if (!BuiltinNames2nd.count(Records[j].Name))
NPortable.push_back(Records[j].Name);
}
}
}

View File

@@ -1,28 +0,0 @@
//===--- TokenKinds.cpp - Token Kinds Support -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TokenKind enum and support functions.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TokenKinds.h"
#include <cassert>
using namespace clang;
static const char * const TokNames[] = {
#define TOK(X) #X,
#define KEYWORD(X,Y) #X,
#include "clang/Basic/TokenKinds.def"
0
};
const char *tok::getTokenName(enum TokenKind Kind) {
assert(Kind < tok::NUM_TOKENS);
return TokNames[Kind];
}

View File

@@ -1,52 +0,0 @@
//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Anders Carlsson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Builtins.h"
#include "clang/AST/Expr.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
using namespace clang;
using namespace CodeGen;
RValue CodeGenFunction::EmitBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
switch (BuiltinID) {
default:
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return EmitCallExpr(CGM.getBuiltinLibFunction(BuiltinID), E);
fprintf(stderr, "Unimplemented builtin!!\n");
E->dump(getContext().SourceMgr);
// Unknown builtin, for now just dump it out and return undef.
if (hasAggregateLLVMType(E->getType()))
return RValue::getAggregate(CreateTempAlloca(ConvertType(E->getType())));
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
case Builtin::BI__builtin___CFStringMakeConstantString: {
const Expr *Arg = E->getArg(0);
while (const ParenExpr *PE = dyn_cast<ParenExpr>(Arg))
Arg = PE->getSubExpr();
const StringLiteral *Literal = cast<StringLiteral>(Arg);
std::string S(Literal->getStrData(), Literal->getByteLength());
return RValue::get(CGM.GetAddrOfConstantCFString(S));
}
}
return RValue::get(0);
}

View File

@@ -1,128 +0,0 @@
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "clang/AST/AST.h"
#include "llvm/Type.h"
using namespace clang;
using namespace CodeGen;
void CodeGenFunction::EmitDecl(const Decl &D) {
switch (D.getKind()) {
default: assert(0 && "Unknown decl kind!");
case Decl::FileVariable:
assert(0 && "Should not see file-scope variables inside a function!");
case Decl::ParmVariable:
assert(0 && "Parmdecls should not be in declstmts!");
case Decl::Typedef: // typedef int X;
case Decl::Function: // void X();
case Decl::Struct: // struct X;
case Decl::Union: // union X;
case Decl::Class: // class X;
case Decl::Enum: // enum X;
// None of these decls require codegen support.
return;
case Decl::BlockVariable:
return EmitBlockVarDecl(cast<BlockVarDecl>(D));
case Decl::EnumConstant:
return EmitEnumConstantDecl(cast<EnumConstantDecl>(D));
}
}
void CodeGenFunction::EmitEnumConstantDecl(const EnumConstantDecl &D) {
assert(0 && "FIXME: Enum constant decls not implemented yet!");
}
/// EmitBlockVarDecl - This method handles emission of any variable declaration
/// inside a function, including static vars etc.
void CodeGenFunction::EmitBlockVarDecl(const BlockVarDecl &D) {
switch (D.getStorageClass()) {
case VarDecl::Static:
assert(0 && "FIXME: local static vars not implemented yet");
case VarDecl::Extern:
assert(0 && "FIXME: should call up to codegenmodule");
default:
assert((D.getStorageClass() == VarDecl::None ||
D.getStorageClass() == VarDecl::Auto ||
D.getStorageClass() == VarDecl::Register) &&
"Unknown storage class");
return EmitLocalBlockVarDecl(D);
}
}
/// EmitLocalBlockVarDecl - Emit code and set up an entry in LocalDeclMap for a
/// variable declaration with auto, register, or no storage class specifier.
/// These turn into simple stack objects.
void CodeGenFunction::EmitLocalBlockVarDecl(const BlockVarDecl &D) {
QualType Ty = D.getCanonicalType();
llvm::Value *DeclPtr;
if (Ty->isConstantSizeType(getContext())) {
// A normal fixed sized variable becomes an alloca in the entry block.
const llvm::Type *LTy = ConvertType(Ty);
// TODO: Alignment
DeclPtr = CreateTempAlloca(LTy, D.getName());
} else {
// TODO: Create a dynamic alloca.
assert(0 && "FIXME: Local VLAs not implemented yet");
}
llvm::Value *&DMEntry = LocalDeclMap[&D];
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
DMEntry = DeclPtr;
// If this local has an initializer, emit it now.
if (const Expr *Init = D.getInit()) {
if (!hasAggregateLLVMType(Init->getType())) {
llvm::Value *V = EmitScalarExpr(Init);
Builder.CreateStore(V, DeclPtr, D.getType().isVolatileQualified());
} else if (Init->getType()->isComplexType()) {
EmitComplexExprIntoAddr(Init, DeclPtr, D.getType().isVolatileQualified());
} else {
EmitAggExpr(Init, DeclPtr, D.getType().isVolatileQualified());
}
}
}
/// Emit an alloca for the specified parameter and set up LocalDeclMap.
void CodeGenFunction::EmitParmDecl(const ParmVarDecl &D, llvm::Value *Arg) {
QualType Ty = D.getCanonicalType();
llvm::Value *DeclPtr;
if (!Ty->isConstantSizeType(getContext())) {
// Variable sized values always are passed by-reference.
DeclPtr = Arg;
} else {
// A fixed sized first class variable becomes an alloca in the entry block.
const llvm::Type *LTy = ConvertType(Ty);
if (LTy->isFirstClassType()) {
// TODO: Alignment
DeclPtr = new llvm::AllocaInst(LTy, 0, std::string(D.getName())+".addr",
AllocaInsertPt);
// Store the initial value into the alloca.
Builder.CreateStore(Arg, DeclPtr);
} else {
// Otherwise, if this is an aggregate, just use the input pointer.
DeclPtr = Arg;
}
Arg->setName(D.getName());
}
llvm::Value *&DMEntry = LocalDeclMap[&D];
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
DMEntry = DeclPtr;
}

View File

@@ -1,451 +0,0 @@
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "clang/Lex/IdentifierTable.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/MathExtras.h"
using namespace clang;
using namespace CodeGen;
//===--------------------------------------------------------------------===//
// Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block.
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
const char *Name) {
return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
}
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
QualType BoolTy = getContext().BoolTy;
if (!E->getType()->isComplexType())
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
}
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
bool isAggLocVolatile) {
if (!hasAggregateLLVMType(E->getType()))
return RValue::get(EmitScalarExpr(E));
else if (E->getType()->isComplexType())
return RValue::getComplex(EmitComplexExpr(E));
EmitAggExpr(E, AggLoc, isAggLocVolatile);
return RValue::getAggregate(AggLoc);
}
//===----------------------------------------------------------------------===//
// LValue Expression Emission
//===----------------------------------------------------------------------===//
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
switch (E->getStmtClass()) {
default: {
fprintf(stderr, "Unimplemented lvalue expr!\n");
E->dump(getContext().SourceMgr);
llvm::Type *Ty = llvm::PointerType::get(ConvertType(E->getType()));
return LValue::MakeAddr(llvm::UndefValue::get(Ty));
}
case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
case Expr::PreDefinedExprClass:
return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
case Expr::StringLiteralClass:
return EmitStringLiteralLValue(cast<StringLiteral>(E));
case Expr::UnaryOperatorClass:
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
case Expr::ArraySubscriptExprClass:
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
case Expr::OCUVectorElementExprClass:
return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
}
}
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
if (LV.isSimple()) {
llvm::Value *Ptr = LV.getAddress();
const llvm::Type *EltTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
// Simple scalar l-value.
if (EltTy->isFirstClassType())
return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
assert(ExprType->isFunctionType() && "Unknown scalar value");
return RValue::get(Ptr);
}
if (LV.isVectorElt()) {
llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
"vecext"));
}
// If this is a reference to a subset of the elements of a vector, either
// shuffle the input or extract/insert them as appropriate.
if (LV.isOCUVectorElt())
return EmitLoadOfOCUElementLValue(LV, ExprType);
assert(0 && "Bitfield ref not impl!");
}
// If this is a reference to a subset of the elements of a vector, either
// shuffle the input or extract/insert them as appropriate.
RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
QualType ExprType) {
llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
unsigned EncFields = LV.getOCUVectorElts();
// If the result of the expression is a non-vector type, we must be
// extracting a single element. Just codegen as an extractelement.
const VectorType *ExprVT = ExprType->getAsVectorType();
if (!ExprVT) {
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
}
// If the source and destination have the same number of elements, use a
// vector shuffle instead of insert/extracts.
unsigned NumResultElts = ExprVT->getNumElements();
unsigned NumSourceElts =
cast<llvm::VectorType>(Vec->getType())->getNumElements();
if (NumResultElts == NumSourceElts) {
llvm::SmallVector<llvm::Constant*, 4> Mask;
for (unsigned i = 0; i != NumResultElts; ++i) {
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
}
llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
Vec = Builder.CreateShuffleVector(Vec,
llvm::UndefValue::get(Vec->getType()),
MaskV, "tmp");
return RValue::get(Vec);
}
// Start out with an undef of the result type.
llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
// Extract/Insert each element of the result.
for (unsigned i = 0; i != NumResultElts; ++i) {
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
}
return RValue::get(Result);
}
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
QualType Ty) {
if (!Dst.isSimple()) {
if (Dst.isVectorElt()) {
// Read/modify/write the vector, inserting the new element.
// FIXME: Volatility.
llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
Dst.getVectorIdx(), "vecins");
Builder.CreateStore(Vec, Dst.getVectorAddr());
return;
}
// If this is an update of elements of a vector, insert them as appropriate.
if (Dst.isOCUVectorElt())
return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
assert(0 && "FIXME: Don't support store to bitfield yet");
}
llvm::Value *DstAddr = Dst.getAddress();
assert(Src.isScalar() && "Can't emit an agg store with this method");
// FIXME: Handle volatility etc.
const llvm::Type *SrcTy = Src.getScalarVal()->getType();
const llvm::Type *AddrTy =
cast<llvm::PointerType>(DstAddr->getType())->getElementType();
if (AddrTy != SrcTy)
DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
"storetmp");
Builder.CreateStore(Src.getScalarVal(), DstAddr);
}
void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
QualType Ty) {
// This access turns into a read/modify/write of the vector. Load the input
// value now.
llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
// FIXME: Volatility.
unsigned EncFields = Dst.getOCUVectorElts();
llvm::Value *SrcVal = Src.getScalarVal();
if (const VectorType *VTy = Ty->getAsVectorType()) {
unsigned NumSrcElts = VTy->getNumElements();
// Extract/Insert each element.
for (unsigned i = 0; i != NumSrcElts; ++i) {
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
}
} else {
// If the Src is a scalar (not a vector) it must be updating one element.
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
}
Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
}
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
const Decl *D = E->getDecl();
if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
llvm::Value *V = LocalDeclMap[D];
assert(V && "BlockVarDecl not entered in LocalDeclMap?");
return LValue::MakeAddr(V);
} else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
}
assert(0 && "Unimp declref");
}
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
// __extension__ doesn't affect lvalue-ness.
if (E->getOpcode() == UnaryOperator::Extension)
return EmitLValue(E->getSubExpr());
assert(E->getOpcode() == UnaryOperator::Deref &&
"'*' is the only unary operator that produces an lvalue");
return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()));
}
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
const char *StrData = E->getStrData();
unsigned Len = E->getByteLength();
// FIXME: Can cache/reuse these within the module.
llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
// Create a global variable for this.
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, ".str", CurFn->getParent());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return LValue::MakeAddr(C);
}
LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
std::string FunctionName(CurFuncDecl->getName());
std::string GlobalVarName;
switch (E->getIdentType()) {
default:
assert(0 && "unknown pre-defined ident type");
case PreDefinedExpr::Func:
GlobalVarName = "__func__.";
break;
case PreDefinedExpr::Function:
GlobalVarName = "__FUNCTION__.";
break;
case PreDefinedExpr::PrettyFunction:
// FIXME:: Demangle C++ method names
GlobalVarName = "__PRETTY_FUNCTION__.";
break;
}
GlobalVarName += CurFuncDecl->getName();
// FIXME: Can cache/reuse these within the module.
llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
// Create a global variable for this.
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, GlobalVarName, CurFn->getParent());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return LValue::MakeAddr(C);
}
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
// The index must always be an integer, which is not an aggregate. Emit it.
llvm::Value *Idx = EmitScalarExpr(E->getIdx());
// If the base is a vector type, then we are forming a vector element lvalue
// with this subscript.
if (E->getLHS()->getType()->isVectorType()) {
// Emit the vector as an lvalue to get its address.
LValue LHS = EmitLValue(E->getLHS());
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
// FIXME: This should properly sign/zero/extend or truncate Idx to i32.
return LValue::MakeVectorElt(LHS.getAddress(), Idx);
}
// The base must be a pointer, which is not an aggregate. Emit it.
llvm::Value *Base = EmitScalarExpr(E->getBase());
// Extend or truncate the index type to 32 or 64-bits.
QualType IdxTy = E->getIdx()->getType();
bool IdxSigned = IdxTy->isSignedIntegerType();
unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
if (IdxBitwidth != LLVMPointerWidth)
Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
IdxSigned, "idxprom");
// We know that the pointer points to a type of the correct size, unless the
// size is a VLA.
if (!E->getType()->isConstantSizeType(getContext()))
assert(0 && "VLA idx not implemented");
return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
}
LValue CodeGenFunction::
EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
// Emit the base vector as an l-value.
LValue Base = EmitLValue(E->getBase());
assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
return LValue::MakeOCUVectorElt(Base.getAddress(),
E->getEncodedElementAccess());
}
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
if (const ImplicitCastExpr *IcExpr =
dyn_cast<const ImplicitCastExpr>(E->getCallee()))
if (const DeclRefExpr *DRExpr =
dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
if (const FunctionDecl *FDecl =
dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
return EmitBuiltinExpr(builtinID, E);
llvm::Value *Callee = EmitScalarExpr(E->getCallee());
return EmitCallExpr(Callee, E);
}
RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, const CallExpr *E) {
// The callee type will always be a pointer to function type, get the function
// type.
QualType CalleeTy = E->getCallee()->getType();
CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
// Get information about the argument types.
FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
// Calling unprototyped functions provides no argument info.
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
ArgTyIt = FTP->arg_type_begin();
ArgTyEnd = FTP->arg_type_end();
}
llvm::SmallVector<llvm::Value*, 16> Args;
// Handle struct-return functions by passing a pointer to the location that
// we would like to return into.
if (hasAggregateLLVMType(E->getType())) {
// Create a temporary alloca to hold the result of the call. :(
Args.push_back(CreateTempAlloca(ConvertType(E->getType())));
// FIXME: set the stret attribute on the argument.
}
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
QualType ArgTy = E->getArg(i)->getType();
if (!hasAggregateLLVMType(ArgTy)) {
// Scalar argument is passed by-value.
Args.push_back(EmitScalarExpr(E->getArg(i)));
} else if (ArgTy->isComplexType()) {
// Make a temporary alloca to pass the argument.
llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
EmitComplexExprIntoAddr(E->getArg(i), DestMem, false);
Args.push_back(DestMem);
} else {
llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
EmitAggExpr(E->getArg(i), DestMem, false);
Args.push_back(DestMem);
}
}
llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
if (V->getType() != llvm::Type::VoidTy)
V->setName("call");
else if (E->getType()->isComplexType())
return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
else if (hasAggregateLLVMType(E->getType()))
// Struct return.
return RValue::getAggregate(Args[0]);
return RValue::get(V);
}

View File

@@ -1,194 +0,0 @@
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Aggregate Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// Aggregate Expression Emitter
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
CodeGenFunction &CGF;
llvm::LLVMBuilder &Builder;
llvm::Value *DestPtr;
bool VolatileDest;
public:
AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
: CGF(cgf), Builder(CGF.Builder),
DestPtr(destPtr), VolatileDest(volatileDest) {
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
/// represents a value lvalue, this method emits the address of the lvalue,
/// then loads the result into DestPtr.
void EmitAggLoadOfLValue(const Expr *E);
void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
QualType EltTy);
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
void VisitStmt(Stmt *S) {
fprintf(stderr, "Unimplemented agg expr!\n");
S->dump(CGF.getContext().SourceMgr);
}
void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
// l-values.
void VisitDeclRefExpr(DeclRefExpr *DRE) { return EmitAggLoadOfLValue(DRE); }
// case Expr::ArraySubscriptExprClass:
// Operators.
// case Expr::UnaryOperatorClass:
// case Expr::ImplicitCastExprClass:
// case Expr::CastExprClass:
// case Expr::CallExprClass:
void VisitStmtExpr(const StmtExpr *E);
void VisitBinaryOperator(const BinaryOperator *BO);
void VisitBinAssign(const BinaryOperator *E);
void VisitConditionalOperator(const ConditionalOperator *CO);
// case Expr::ChooseExprClass:
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr,
llvm::Value *SrcPtr, QualType Ty) {
assert(!Ty->isComplexType() && "Shouldn't happen for complex");
// Aggregate assignment turns into llvm.memcpy.
const llvm::Type *BP = llvm::PointerType::get(llvm::Type::Int8Ty);
if (DestPtr->getType() != BP)
DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
if (SrcPtr->getType() != BP)
SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
// Get size and alignment info for this aggregate.
std::pair<uint64_t, unsigned> TypeInfo =
CGF.getContext().getTypeInfo(Ty, SourceLocation());
// FIXME: Handle variable sized types.
const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
llvm::Value *MemCpyOps[4] = {
DestPtr, SrcPtr,
llvm::ConstantInt::get(IntPtr, TypeInfo.first),
llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second)
};
Builder.CreateCall(CGF.CGM.getMemCpyFn(), MemCpyOps, MemCpyOps+4);
}
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
/// represents a value lvalue, this method emits the address of the lvalue,
/// then loads the result into DestPtr.
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
LValue LV = CGF.EmitLValue(E);
assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
llvm::Value *SrcPtr = LV.getAddress();
// If the result is ignored, don't copy from the value.
if (DestPtr == 0)
// FIXME: If the source is volatile, we must read from it.
return;
EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
}
void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
fprintf(stderr, "Unimplemented aggregate binary expr!\n");
E->dump(CGF.getContext().SourceMgr);
}
void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
assert(E->getLHS()->getType().getCanonicalType() ==
E->getRHS()->getType().getCanonicalType() && "Invalid assignment");
LValue LHS = CGF.EmitLValue(E->getLHS());
// Codegen the RHS so that it stores directly into the LHS.
CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
// If the result of the assignment is used, copy the RHS there also.
if (DestPtr) {
assert(0 && "FIXME: Chained agg assignment not implemented yet");
}
}
void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
CGF.EmitBlock(LHSBlock);
// Handle the GNU extension for missing LHS.
assert(E->getLHS() && "Must have LHS for aggregate value");
Visit(E->getLHS());
Builder.CreateBr(ContBlock);
LHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(RHSBlock);
Visit(E->getRHS());
Builder.CreateBr(ContBlock);
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
}
//===----------------------------------------------------------------------===//
// Entry Points into this File
//===----------------------------------------------------------------------===//
/// EmitAggExpr - Emit the computation of the specified expression of
/// aggregate type. The result is computed into DestPtr. Note that if
/// DestPtr is null, the value of the aggregate expression is not needed.
void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
bool VolatileDest) {
assert(E && hasAggregateLLVMType(E->getType()) &&
"Invalid aggregate expression to emit");
AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
}

View File

@@ -1,532 +0,0 @@
//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with complex types as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// Complex Expression Emitter
//===----------------------------------------------------------------------===//
typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
namespace {
class VISIBILITY_HIDDEN ComplexExprEmitter
: public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
CodeGenFunction &CGF;
llvm::LLVMBuilder &Builder;
public:
ComplexExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) {
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// EmitLoadOfLValue - Given an expression with complex type that represents a
/// value l-value, this method emits the address of the l-value, then loads
/// and returns the result.
ComplexPairTy EmitLoadOfLValue(const Expr *E) {
LValue LV = CGF.EmitLValue(E);
// FIXME: Volatile
return EmitLoadOfComplex(LV.getAddress(), false);
}
/// EmitLoadOfComplex - Given a pointer to a complex value, emit code to load
/// the real and imaginary pieces.
ComplexPairTy EmitLoadOfComplex(llvm::Value *SrcPtr, bool isVolatile);
/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *ResPtr, bool isVol);
/// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
QualType DestType);
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
ComplexPairTy VisitStmt(Stmt *S) {
S->dump(CGF.getContext().SourceMgr);
assert(0 && "Stmt can't have complex result type!");
return ComplexPairTy();
}
ComplexPairTy VisitExpr(Expr *S);
ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
// l-values.
ComplexPairTy VisitDeclRefExpr(const Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
// FIXME: CompoundLiteralExpr
ComplexPairTy EmitCast(Expr *Op, QualType DestTy);
ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
// Unlike for scalars, we don't have to worry about function->ptr demotion
// here.
return EmitCast(E->getSubExpr(), E->getType());
}
ComplexPairTy VisitCastExpr(CastExpr *E) {
return EmitCast(E->getSubExpr(), E->getType());
}
ComplexPairTy VisitCallExpr(const CallExpr *E);
ComplexPairTy VisitStmtExpr(const StmtExpr *E);
// Operators.
ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
bool isInc, bool isPre);
ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, false);
}
ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, false);
}
ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, true);
}
ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, true);
}
ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
// LNot,SizeOf,AlignOf,Real,Imag never return complex.
ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
struct BinOpInfo {
ComplexPairTy LHS;
ComplexPairTy RHS;
QualType Ty; // Computation Type.
};
BinOpInfo EmitBinOps(const BinaryOperator *E);
ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)
(const BinOpInfo &));
ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
ComplexPairTy EmitBinSub(const BinOpInfo &Op);
ComplexPairTy EmitBinMul(const BinOpInfo &Op);
ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
ComplexPairTy VisitBinMul(const BinaryOperator *E) {
return EmitBinMul(EmitBinOps(E));
}
ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
return EmitBinAdd(EmitBinOps(E));
}
ComplexPairTy VisitBinSub(const BinaryOperator *E) {
return EmitBinSub(EmitBinOps(E));
}
ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
return EmitBinDiv(EmitBinOps(E));
}
// Compound assignments.
ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
}
ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
}
ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
}
ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
}
// GCC rejects rem/and/or/xor for integer complex.
// Logical and/or always return int, never complex.
// No comparisons produce a complex result.
ComplexPairTy VisitBinAssign (const BinaryOperator *E);
ComplexPairTy VisitBinComma (const BinaryOperator *E);
ComplexPairTy VisitConditionalOperator(const ConditionalOperator *CO);
ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to
/// load the real and imaginary pieces, returning them as Real/Imag.
ComplexPairTy ComplexExprEmitter::EmitLoadOfComplex(llvm::Value *SrcPtr,
bool isVolatile) {
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
llvm::SmallString<64> Name(SrcPtr->getNameStart(),
SrcPtr->getNameStart()+SrcPtr->getNameLen());
Name += ".realp";
llvm::Value *Ops[] = {Zero, Zero};
llvm::Value *RealPtr = Builder.CreateGEP(SrcPtr, Ops, Ops+2, Name.c_str());
Name.pop_back(); // .realp -> .real
llvm::Value *Real = Builder.CreateLoad(RealPtr, isVolatile, Name.c_str());
Name.resize(Name.size()-4); // .real -> .imagp
Name += "imagp";
Ops[1] = One; // { Ops = { Zero, One }
llvm::Value *ImagPtr = Builder.CreateGEP(SrcPtr, Ops, Ops+2, Name.c_str());
Name.pop_back(); // .imagp -> .imag
llvm::Value *Imag = Builder.CreateLoad(ImagPtr, isVolatile, Name.c_str());
return ComplexPairTy(Real, Imag);
}
/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *Ptr,
bool isVolatile) {
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
llvm::Value *Ops[] = {Zero, Zero};
llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Ops, Ops+2, "real");
Ops[1] = One; // { Ops = { Zero, One }
llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Ops, Ops+2, "imag");
Builder.CreateStore(Val.first, RealPtr, isVolatile);
Builder.CreateStore(Val.second, ImagPtr, isVolatile);
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
fprintf(stderr, "Unimplemented complex expr!\n");
E->dump(CGF.getContext().SourceMgr);
const llvm::Type *EltTy =
CGF.ConvertType(E->getType()->getAsComplexType()->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}
ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
}
ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
return CGF.EmitCallExpr(E).getComplexVal();
}
ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getComplexVal();
}
/// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
QualType SrcType,
QualType DestType) {
// Get the src/dest element type.
SrcType = cast<ComplexType>(SrcType.getCanonicalType())->getElementType();
DestType = cast<ComplexType>(DestType.getCanonicalType())->getElementType();
// C99 6.3.1.6: When a value of complextype is converted to another
// complex type, both the real and imaginary parts followthe conversion
// rules for the corresponding real types.
Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType);
Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType);
return Val;
}
ComplexPairTy ComplexExprEmitter::EmitCast(Expr *Op, QualType DestTy) {
// Two cases here: cast from (complex to complex) and (scalar to complex).
if (Op->getType()->isComplexType())
return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy);
// C99 6.3.1.7: When a value of real type is converted to a complex type, the
// real part of the complex result value is determined by the rules of
// conversion to the corresponding real type and the imaginary part of the
// complex result value is a positive zero or an unsigned zero.
llvm::Value *Elt = CGF.EmitScalarExpr(Op);
// Convert the input element to the element type of the complex.
DestTy = cast<ComplexType>(DestTy.getCanonicalType())->getElementType();
Elt = CGF.EmitScalarConversion(Elt, Op->getType(), DestTy);
// Return (realval, 0).
return ComplexPairTy(Elt, llvm::Constant::getNullValue(Elt->getType()));
}
ComplexPairTy ComplexExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
bool isInc, bool isPre) {
LValue LV = CGF.EmitLValue(E->getSubExpr());
// FIXME: Handle volatile!
ComplexPairTy InVal = EmitLoadOfComplex(LV.getAddress(), false);
uint64_t AmountVal = isInc ? 1 : -1;
llvm::Value *NextVal;
if (isa<llvm::IntegerType>(InVal.first->getType()))
NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal);
else
NextVal = llvm::ConstantFP::get(InVal.first->getType(),
static_cast<double>(AmountVal));
// Add the inc/dec to the real part.
NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
ComplexPairTy IncVal(NextVal, InVal.second);
// Store the updated result through the lvalue.
EmitStoreOfComplex(IncVal, LV.getAddress(), false); /* FIXME: Volatile */
// If this is a postinc, return the value read from memory, otherwise use the
// updated value.
return isPre ? IncVal : InVal;
}
ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
ComplexPairTy Op = Visit(E->getSubExpr());
llvm::Value *ResR = Builder.CreateNeg(Op.first, "neg.r");
llvm::Value *ResI = Builder.CreateNeg(Op.second, "neg.i");
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
// ~(a+ib) = a + i*-b
ComplexPairTy Op = Visit(E->getSubExpr());
llvm::Value *ResI = Builder.CreateNeg(Op.second, "conj.i");
return ComplexPairTy(Op.first, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
llvm::Value *ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
llvm::Value *ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
llvm::Value *ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
llvm::Value *ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
llvm::Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
llvm::Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second,"mul.rr");
llvm::Value *ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
llvm::Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
llvm::Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
llvm::Value *ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
// (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr, "tmp"); // a*c
llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi, "tmp"); // b*d
llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2, "tmp"); // ac+bd
llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr, "tmp"); // c*c
llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi, "tmp"); // d*d
llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5, "tmp"); // cc+dd
llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr, "tmp"); // b*c
llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi, "tmp"); // a*d
llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8, "tmp"); // bc-ad
llvm::Value *DSTr, *DSTi;
if (Tmp3->getType()->isFloatingPoint()) {
DSTr = Builder.CreateFDiv(Tmp3, Tmp6, "tmp");
DSTi = Builder.CreateFDiv(Tmp9, Tmp6, "tmp");
} else {
if (Op.Ty->getAsComplexType()->getElementType()->isUnsignedIntegerType()) {
DSTr = Builder.CreateUDiv(Tmp3, Tmp6, "tmp");
DSTi = Builder.CreateUDiv(Tmp9, Tmp6, "tmp");
} else {
DSTr = Builder.CreateSDiv(Tmp3, Tmp6, "tmp");
DSTi = Builder.CreateSDiv(Tmp9, Tmp6, "tmp");
}
}
return ComplexPairTy(DSTr, DSTi);
}
ComplexExprEmitter::BinOpInfo
ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
BinOpInfo Ops;
Ops.LHS = Visit(E->getLHS());
Ops.RHS = Visit(E->getRHS());
Ops.Ty = E->getType();
return Ops;
}
// Compound assignments.
ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
// Load the LHS and RHS operands.
LValue LHSLV = CGF.EmitLValue(E->getLHS());
BinOpInfo OpInfo;
OpInfo.Ty = E->getComputationType();
// We know the LHS is a complex lvalue.
OpInfo.LHS = EmitLoadOfComplex(LHSLV.getAddress(), false);// FIXME: Volatile.
OpInfo.LHS = EmitComplexToComplexCast(OpInfo.LHS, LHSTy, OpInfo.Ty);
// It is possible for the RHS to be complex or scalar.
OpInfo.RHS = EmitCast(E->getRHS(), OpInfo.Ty);
// Expand the binary operator.
ComplexPairTy Result = (this->*Func)(OpInfo);
// Truncate the result back to the LHS type.
Result = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
// Store the result value into the LHS lvalue.
EmitStoreOfComplex(Result, LHSLV.getAddress(), false); // FIXME: VOLATILE
return Result;
}
ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
assert(E->getLHS()->getType().getCanonicalType() ==
E->getRHS()->getType().getCanonicalType() && "Invalid assignment");
// Emit the RHS.
ComplexPairTy Val = Visit(E->getRHS());
// Compute the address to store into.
LValue LHS = CGF.EmitLValue(E->getLHS());
// Store into it.
// FIXME: Volatility!
EmitStoreOfComplex(Val, LHS.getAddress(), false);
return Val;
}
ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
CGF.EmitStmt(E->getLHS());
return Visit(E->getRHS());
}
ComplexPairTy ComplexExprEmitter::
VisitConditionalOperator(const ConditionalOperator *E) {
llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
CGF.EmitBlock(LHSBlock);
// Handle the GNU extension for missing LHS.
assert(E->getLHS() && "Must have LHS for complex value");
ComplexPairTy LHS = Visit(E->getLHS());
Builder.CreateBr(ContBlock);
LHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(RHSBlock);
ComplexPairTy RHS = Visit(E->getRHS());
Builder.CreateBr(ContBlock);
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
// Create a PHI node for the real part.
llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), "cond.r");
RealPN->reserveOperandSpace(2);
RealPN->addIncoming(LHS.first, LHSBlock);
RealPN->addIncoming(RHS.first, RHSBlock);
// Create a PHI node for the imaginary part.
llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), "cond.i");
ImagPN->reserveOperandSpace(2);
ImagPN->addIncoming(LHS.second, LHSBlock);
ImagPN->addIncoming(RHS.second, RHSBlock);
return ComplexPairTy(RealPN, ImagPN);
}
ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
llvm::APSInt CondVal(32);
bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext());
assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
// Emit the LHS or RHS as appropriate.
return Visit(CondVal != 0 ? E->getLHS() : E->getRHS());
}
//===----------------------------------------------------------------------===//
// Entry Point into this File
//===----------------------------------------------------------------------===//
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, ignoring the result.
ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E) {
assert(E && E->getType()->isComplexType() &&
"Invalid complex expression to emit");
return ComplexExprEmitter(*this).Visit(const_cast<Expr*>(E));
}
/// EmitComplexExprIntoAddr - Emit the computation of the specified expression
/// of complex type, storing into the specified Value*.
void CodeGenFunction::EmitComplexExprIntoAddr(const Expr *E,
llvm::Value *DestAddr,
bool DestIsVolatile) {
assert(E && E->getType()->isComplexType() &&
"Invalid complex expression to emit");
ComplexExprEmitter Emitter(*this);
ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
Emitter.EmitStoreOfComplex(Val, DestAddr, DestIsVolatile);
}
/// LoadComplexFromAddr - Load a complex number from the specified address.
ComplexPairTy CodeGenFunction::LoadComplexFromAddr(llvm::Value *SrcAddr,
bool SrcIsVolatile) {
return ComplexExprEmitter(*this).EmitLoadOfComplex(SrcAddr, SrcIsVolatile);
}

View File

@@ -1,920 +0,0 @@
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using namespace CodeGen;
using llvm::Value;
//===----------------------------------------------------------------------===//
// Scalar Expression Emitter
//===----------------------------------------------------------------------===//
struct BinOpInfo {
Value *LHS;
Value *RHS;
QualType Ty; // Computation Type.
const BinaryOperator *E;
};
namespace {
class VISIBILITY_HIDDEN ScalarExprEmitter
: public StmtVisitor<ScalarExprEmitter, Value*> {
CodeGenFunction &CGF;
llvm::LLVMBuilder &Builder;
public:
ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) {
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
Value *EmitLoadOfLValue(LValue LV, QualType T) {
return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
}
/// EmitLoadOfLValue - Given an expression with complex type that represents a
/// value l-value, this method emits the address of the l-value, then loads
/// and returns the result.
Value *EmitLoadOfLValue(const Expr *E) {
// FIXME: Volatile
return EmitLoadOfLValue(EmitLValue(E), E->getType());
}
/// EmitConversionToBool - Convert the specified expression value to a
/// boolean (i1) truth value. This is equivalent to "Val != 0".
Value *EmitConversionToBool(Value *Src, QualType DstTy);
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
/// EmitComplexToScalarConversion - Emit a conversion from the specified
/// complex type to the specified destination type, where the destination
/// type is an LLVM scalar type.
Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
QualType SrcTy, QualType DstTy);
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
Value *VisitStmt(Stmt *S) {
S->dump(CGF.getContext().SourceMgr);
assert(0 && "Stmt can't have complex result type!");
return 0;
}
Value *VisitExpr(Expr *S);
Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
// Leaves.
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
return llvm::ConstantInt::get(E->getValue());
}
Value *VisitFloatingLiteral(const FloatingLiteral *E) {
double V = E->getValue();
// FIXME: Change this when FloatingLiteral uses an APFloat internally.
const llvm::Type *Ty = ConvertType(E->getType());
if (Ty == llvm::Type::FloatTy)
return llvm::ConstantFP::get(Ty, llvm::APFloat((float)V));
assert(Ty == llvm::Type::DoubleTy && "Unknown float type!");
return llvm::ConstantFP::get(Ty, llvm::APFloat((double)V));
}
Value *VisitCharacterLiteral(const CharacterLiteral *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
}
Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()),
E->typesAreCompatible());
}
Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
}
// l-values.
Value *VisitDeclRefExpr(DeclRefExpr *E) {
if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
return llvm::ConstantInt::get(EC->getInitVal());
return EmitLoadOfLValue(E);
}
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
// FIXME: CompoundLiteralExpr
Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
Value *VisitCastExpr(const CastExpr *E) {
return EmitCastExpr(E->getSubExpr(), E->getType());
}
Value *EmitCastExpr(const Expr *E, QualType T);
Value *VisitCallExpr(const CallExpr *E) {
return CGF.EmitCallExpr(E).getScalarVal();
}
Value *VisitStmtExpr(const StmtExpr *E);
// Unary Operators.
Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
Value *VisitUnaryPostDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, false);
}
Value *VisitUnaryPostInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, false);
}
Value *VisitUnaryPreDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, true);
}
Value *VisitUnaryPreInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, true);
}
Value *VisitUnaryAddrOf(const UnaryOperator *E) {
return EmitLValue(E->getSubExpr()).getAddress();
}
Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
Value *VisitUnaryPlus(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
Value *VisitUnaryMinus (const UnaryOperator *E);
Value *VisitUnaryNot (const UnaryOperator *E);
Value *VisitUnaryLNot (const UnaryOperator *E);
Value *VisitUnarySizeOf (const UnaryOperator *E) {
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
}
Value *VisitUnaryAlignOf (const UnaryOperator *E) {
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
}
Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
bool isSizeOf);
Value *VisitUnaryReal (const UnaryOperator *E);
Value *VisitUnaryImag (const UnaryOperator *E);
Value *VisitUnaryExtension(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
// Binary Operators.
Value *EmitMul(const BinOpInfo &Ops) {
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
}
Value *EmitDiv(const BinOpInfo &Ops);
Value *EmitRem(const BinOpInfo &Ops);
Value *EmitAdd(const BinOpInfo &Ops);
Value *EmitSub(const BinOpInfo &Ops);
Value *EmitShl(const BinOpInfo &Ops);
Value *EmitShr(const BinOpInfo &Ops);
Value *EmitAnd(const BinOpInfo &Ops) {
return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
}
Value *EmitXor(const BinOpInfo &Ops) {
return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
}
Value *EmitOr (const BinOpInfo &Ops) {
return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
}
BinOpInfo EmitBinOps(const BinaryOperator *E);
Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
// Binary operators and binary compound assignment operators.
#define HANDLEBINOP(OP) \
Value *VisitBin ## OP(const BinaryOperator *E) { \
return Emit ## OP(EmitBinOps(E)); \
} \
Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
}
HANDLEBINOP(Mul);
HANDLEBINOP(Div);
HANDLEBINOP(Rem);
HANDLEBINOP(Add);
// (Sub) - Sub is handled specially below for ptr-ptr subtract.
HANDLEBINOP(Shl);
HANDLEBINOP(Shr);
HANDLEBINOP(And);
HANDLEBINOP(Xor);
HANDLEBINOP(Or);
#undef HANDLEBINOP
Value *VisitBinSub(const BinaryOperator *E);
Value *VisitBinSubAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub);
}
// Comparisons.
Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
unsigned SICmpOpc, unsigned FCmpOpc);
#define VISITCOMP(CODE, UI, SI, FP) \
Value *VisitBin##CODE(const BinaryOperator *E) { \
return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
llvm::FCmpInst::FP); }
VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
#undef VISITCOMP
Value *VisitBinAssign (const BinaryOperator *E);
Value *VisitBinLAnd (const BinaryOperator *E);
Value *VisitBinLOr (const BinaryOperator *E);
Value *VisitBinComma (const BinaryOperator *E);
// Other Operators.
Value *VisitConditionalOperator(const ConditionalOperator *CO);
Value *VisitChooseExpr(ChooseExpr *CE);
Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
return CGF.EmitObjCStringLiteral(E);
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// EmitConversionToBool - Convert the specified expression value to a
/// boolean (i1) truth value. This is equivalent to "Val != 0".
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
if (SrcType->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
return Builder.CreateFCmpUNE(Src, Zero, "tobool");
}
assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
"Unknown scalar type to convert");
// Because of the type rules of C, we often end up computing a logical value,
// then zero extending it to int, then wanting it as a logical value again.
// Optimize this common case.
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
Value *Result = ZI->getOperand(0);
ZI->eraseFromParent();
return Result;
}
}
// Compare against an integer or pointer null.
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
return Builder.CreateICmpNE(Src, Zero, "tobool");
}
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
QualType DstType) {
SrcType = SrcType.getCanonicalType();
DstType = DstType.getCanonicalType();
if (SrcType == DstType) return Src;
if (DstType->isVoidType()) return 0;
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstType->isBooleanType())
return EmitConversionToBool(Src, SrcType);
const llvm::Type *DstTy = ConvertType(DstType);
// Ignore conversions like int -> uint.
if (Src->getType() == DstTy)
return Src;
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<PointerType>(DstType)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(Src->getType()))
return Builder.CreateBitCast(Src, DstTy, "conv");
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return Builder.CreateIntToPtr(Src, DstTy, "conv");
}
if (isa<PointerType>(SrcType)) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
return Builder.CreateIntToPtr(Src, DstTy, "conv");
}
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(Src->getType())) {
bool InputSigned = SrcType->isSignedIntegerType();
if (isa<llvm::IntegerType>(DstTy))
return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
else if (InputSigned)
return Builder.CreateSIToFP(Src, DstTy, "conv");
else
return Builder.CreateUIToFP(Src, DstTy, "conv");
}
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(DstTy)) {
if (DstType->isSignedIntegerType())
return Builder.CreateFPToSI(Src, DstTy, "conv");
else
return Builder.CreateFPToUI(Src, DstTy, "conv");
}
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
if (DstTy->getTypeID() < Src->getType()->getTypeID())
return Builder.CreateFPTrunc(Src, DstTy, "conv");
else
return Builder.CreateFPExt(Src, DstTy, "conv");
}
/// EmitComplexToScalarConversion - Emit a conversion from the specified
/// complex type to the specified destination type, where the destination
/// type is an LLVM scalar type.
Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
QualType SrcTy, QualType DstTy) {
// Get the source element type.
SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType();
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstTy->isBooleanType()) {
// Complex != 0 -> (Real != 0) | (Imag != 0)
Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
return Builder.CreateOr(Src.first, Src.second, "tobool");
}
// C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
// the imaginary part of the complex value is discarded and the value of the
// real part is converted according to the conversion rules for the
// corresponding real type.
return EmitScalarConversion(Src.first, SrcTy, DstTy);
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
Value *ScalarExprEmitter::VisitExpr(Expr *E) {
fprintf(stderr, "Unimplemented scalar expr!\n");
E->dump(CGF.getContext().SourceMgr);
if (E->getType()->isVoidType())
return 0;
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
}
Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
// Emit subscript expressions in rvalue context's. For most cases, this just
// loads the lvalue formed by the subscript expr. However, we have to be
// careful, because the base of a vector subscript is occasionally an rvalue,
// so we can't get it as an lvalue.
if (!E->getBase()->getType()->isVectorType())
return EmitLoadOfLValue(E);
// Handle the vector case. The base must be a vector, the index must be an
// integer value.
Value *Base = Visit(E->getBase());
Value *Idx = Visit(E->getIdx());
// FIXME: Convert Idx to i32 type.
return Builder.CreateExtractElement(Base, Idx, "vecext");
}
/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
/// also handle things like function to pointer-to-function decay, and array to
/// pointer decay.
Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
const Expr *Op = E->getSubExpr();
// If this is due to array->pointer conversion, emit the array expression as
// an l-value.
if (Op->getType()->isArrayType()) {
// FIXME: For now we assume that all source arrays map to LLVM arrays. This
// will not true when we add support for VLAs.
Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
assert(isa<llvm::PointerType>(V->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
->getElementType()) &&
"Doesn't support VLAs yet!");
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Value *Ops[] = {Idx0, Idx0};
return Builder.CreateGEP(V, Ops, Ops+2, "arraydecay");
}
return EmitCastExpr(Op, E->getType());
}
// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
// have to handle a more broad range of conversions than explicit casts, as they
// handle things like function to ptr-to-function decay etc.
Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
// Handle cases where the source is an non-complex type.
if (!E->getType()->isComplexType()) {
Value *Src = Visit(const_cast<Expr*>(E));
// Use EmitScalarConversion to perform the conversion.
return EmitScalarConversion(Src, E->getType(), DestTy);
}
// Handle cases where the source is a complex type.
return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
DestTy);
}
Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal();
}
//===----------------------------------------------------------------------===//
// Unary Operators
//===----------------------------------------------------------------------===//
Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
bool isInc, bool isPre) {
LValue LV = EmitLValue(E->getSubExpr());
// FIXME: Handle volatile!
Value *InVal = CGF.EmitLoadOfLValue(LV, // false
E->getSubExpr()->getType()).getScalarVal();
int AmountVal = isInc ? 1 : -1;
Value *NextVal;
if (isa<llvm::PointerType>(InVal->getType())) {
// FIXME: This isn't right for VLAs.
NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
NextVal = Builder.CreateGEP(InVal, NextVal);
} else {
// Add the inc/dec to the real part.
if (isa<llvm::IntegerType>(InVal->getType()))
NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
else
NextVal = llvm::ConstantFP::get(InVal->getType(),
static_cast<double>(AmountVal));
NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
}
// Store the updated result through the lvalue.
CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
E->getSubExpr()->getType());
// If this is a postinc, return the value read from memory, otherwise use the
// updated value.
return isPre ? NextVal : InVal;
}
Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
Value *Op = Visit(E->getSubExpr());
return Builder.CreateNeg(Op, "neg");
}
Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
Value *Op = Visit(E->getSubExpr());
return Builder.CreateNot(Op, "neg");
}
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
// Compare operand to zero.
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
// Invert value.
// TODO: Could dynamically modify easy computations here. For example, if
// the operand is an icmp ne, turn into icmp eq.
BoolVal = Builder.CreateNot(BoolVal, "lnot");
// ZExt result to int.
return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
}
/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
/// an integer (RetType).
Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
QualType RetType,bool isSizeOf){
/// FIXME: This doesn't handle VLAs yet!
std::pair<uint64_t, unsigned> Info =
CGF.getContext().getTypeInfo(TypeToSize, SourceLocation());
uint64_t Val = isSizeOf ? Info.first : Info.second;
Val /= 8; // Return size in bytes, not bits.
assert(RetType->isIntegerType() && "Result type must be an integer!");
unsigned ResultWidth = static_cast<unsigned>(CGF.getContext().getTypeSize(RetType,SourceLocation()));
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
}
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
Expr *Op = E->getSubExpr();
if (Op->getType()->isComplexType())
return CGF.EmitComplexExpr(Op).first;
return Visit(Op);
}
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
Expr *Op = E->getSubExpr();
if (Op->getType()->isComplexType())
return CGF.EmitComplexExpr(Op).second;
// __imag on a scalar returns zero. Emit it the subexpr to ensure side
// effects are evaluated.
CGF.EmitScalarExpr(Op);
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
//===----------------------------------------------------------------------===//
// Binary Operators
//===----------------------------------------------------------------------===//
BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
BinOpInfo Result;
Result.LHS = Visit(E->getLHS());
Result.RHS = Visit(E->getRHS());
Result.Ty = E->getType();
Result.E = E;
return Result;
}
Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
BinOpInfo OpInfo;
// Load the LHS and RHS operands.
LValue LHSLV = EmitLValue(E->getLHS());
OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
// Determine the computation type. If the RHS is complex, then this is one of
// the add/sub/mul/div operators. All of these operators can be computed in
// with just their real component even though the computation domain really is
// complex.
QualType ComputeType = E->getComputationType();
// If the computation type is complex, then the RHS is complex. Emit the RHS.
if (const ComplexType *CT = ComputeType->getAsComplexType()) {
ComputeType = CT->getElementType();
// Emit the RHS, only keeping the real component.
OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
RHSTy = RHSTy->getAsComplexType()->getElementType();
} else {
// Otherwise the RHS is a simple scalar value.
OpInfo.RHS = Visit(E->getRHS());
}
// Convert the LHS/RHS values to the computation type.
OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType);
// Do not merge types for -= where the LHS is a pointer.
if (E->getOpcode() != BinaryOperator::SubAssign ||
!E->getLHS()->getType()->isPointerType()) {
OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType);
}
OpInfo.Ty = ComputeType;
OpInfo.E = E;
// Expand the binary operator.
Value *Result = (this->*Func)(OpInfo);
// Truncate the result back to the LHS type.
Result = EmitScalarConversion(Result, ComputeType, LHSTy);
// Store the result value into the LHS lvalue.
CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType());
return Result;
}
Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
if (Ops.LHS->getType()->isFloatingPoint())
return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
else if (Ops.Ty->isUnsignedIntegerType())
return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
else
return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
}
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
// Rem in C can't be a floating point type: C99 6.5.5p2.
if (Ops.Ty->isUnsignedIntegerType())
return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
else
return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
}
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
if (!Ops.Ty->isPointerType())
return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
// FIXME: What about a pointer to a VLA?
if (isa<llvm::PointerType>(Ops.LHS->getType())) // pointer + int
return Builder.CreateGEP(Ops.LHS, Ops.RHS, "add.ptr");
// int + pointer
return Builder.CreateGEP(Ops.RHS, Ops.LHS, "add.ptr");
}
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
if (!isa<llvm::PointerType>(Ops.LHS->getType()))
return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
// pointer - int
assert(!isa<llvm::PointerType>(Ops.RHS->getType()) &&
"ptr-ptr shouldn't get here");
// FIXME: The pointer could point to a VLA.
Value *NegatedRHS = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg");
return Builder.CreateGEP(Ops.LHS, NegatedRHS, "sub.ptr");
}
Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) {
// "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In
// the compound assignment case it is invalid, so just handle it here.
if (!E->getRHS()->getType()->isPointerType())
return EmitSub(EmitBinOps(E));
// pointer - pointer
Value *LHS = Visit(E->getLHS());
Value *RHS = Visit(E->getRHS());
const PointerType *LHSPtrType = E->getLHS()->getType()->getAsPointerType();
assert(LHSPtrType == E->getRHS()->getType()->getAsPointerType() &&
"Can't subtract different pointer types");
QualType LHSElementType = LHSPtrType->getPointeeType();
uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType,
SourceLocation()) / 8;
const llvm::Type *ResultType = ConvertType(E->getType());
LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
// HACK: LLVM doesn't have an divide instruction that 'knows' there is no
// remainder. As such, we handle common power-of-two cases here to generate
// better code.
if (llvm::isPowerOf2_64(ElementSize)) {
Value *ShAmt =
llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
}
// Otherwise, do a full sdiv.
Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
}
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
// RHS to the same size as the LHS.
Value *RHS = Ops.RHS;
if (Ops.LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
return Builder.CreateShl(Ops.LHS, RHS, "shl");
}
Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
// RHS to the same size as the LHS.
Value *RHS = Ops.RHS;
if (Ops.LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
if (Ops.Ty->isUnsignedIntegerType())
return Builder.CreateLShr(Ops.LHS, RHS, "shr");
return Builder.CreateAShr(Ops.LHS, RHS, "shr");
}
Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
unsigned SICmpOpc, unsigned FCmpOpc) {
Value *Result;
QualType LHSTy = E->getLHS()->getType();
if (!LHSTy->isComplexType()) {
Value *LHS = Visit(E->getLHS());
Value *RHS = Visit(E->getRHS());
if (LHS->getType()->isFloatingPoint()) {
Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
LHS, RHS, "cmp");
} else if (LHSTy->isUnsignedIntegerType()) {
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
LHS, RHS, "cmp");
} else {
// Signed integers and pointers.
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
LHS, RHS, "cmp");
}
} else {
// Complex Comparison: can only be an equality comparison.
CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
QualType CETy =
cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
Value *ResultR, *ResultI;
if (CETy->isRealFloatingType()) {
ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
LHS.first, RHS.first, "cmp.r");
ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
LHS.second, RHS.second, "cmp.i");
} else {
// Complex comparisons can only be equality comparisons. As such, signed
// and unsigned opcodes are the same.
ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
LHS.first, RHS.first, "cmp.r");
ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
LHS.second, RHS.second, "cmp.i");
}
if (E->getOpcode() == BinaryOperator::EQ) {
Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
} else {
assert(E->getOpcode() == BinaryOperator::NE &&
"Complex comparison other than == or != ?");
Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
}
}
// ZExt result to int.
return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
}
Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
LValue LHS = EmitLValue(E->getLHS());
Value *RHS = Visit(E->getRHS());
// Store the value into the LHS.
// FIXME: Volatility!
CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
// Return the RHS.
return RHS;
}
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
CGF.EmitBlock(RHSBlock);
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
// Create a PHI node. If we just evaluted the LHS condition, the result is
// false. If we evaluated both, the result is the RHS condition.
llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
PN->reserveOperandSpace(2);
PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
PN->addIncoming(RHSCond, RHSBlock);
// ZExt result to int.
return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
}
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
CGF.EmitBlock(RHSBlock);
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
// Create a PHI node. If we just evaluted the LHS condition, the result is
// true. If we evaluated both, the result is the RHS condition.
llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
PN->reserveOperandSpace(2);
PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
PN->addIncoming(RHSCond, RHSBlock);
// ZExt result to int.
return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
}
Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
CGF.EmitStmt(E->getLHS());
return Visit(E->getRHS());
}
//===----------------------------------------------------------------------===//
// Other Operators
//===----------------------------------------------------------------------===//
Value *ScalarExprEmitter::
VisitConditionalOperator(const ConditionalOperator *E) {
llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
CGF.EmitBlock(LHSBlock);
// Handle the GNU extension for missing LHS.
Value *LHS = E->getLHS() ? Visit(E->getLHS()) : Cond;
Builder.CreateBr(ContBlock);
LHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(RHSBlock);
Value *RHS = Visit(E->getRHS());
Builder.CreateBr(ContBlock);
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
// Create a PHI node for the real part.
llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
PN->reserveOperandSpace(2);
PN->addIncoming(LHS, LHSBlock);
PN->addIncoming(RHS, RHSBlock);
return PN;
}
Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
llvm::APSInt CondVal(32);
bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext());
assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
// Emit the LHS or RHS as appropriate.
return Visit(CondVal != 0 ? E->getLHS() : E->getRHS());
}
//===----------------------------------------------------------------------===//
// Entry Point into this File
//===----------------------------------------------------------------------===//
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, ignoring the result.
Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
assert(E && !hasAggregateLLVMType(E->getType()) &&
"Invalid scalar expression to emit");
return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
}
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
QualType DstTy) {
assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
"Invalid scalar expression to emit");
return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
}
/// EmitComplexToScalarConversion - Emit a conversion from the specified
/// complex type to the specified destination type, where the destination
/// type is an LLVM scalar type.
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
QualType SrcTy,
QualType DstTy) {
assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) &&
"Invalid complex -> scalar conversion");
return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
DstTy);
}

View File

@@ -1,25 +0,0 @@
//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Anders Carlsson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Objective-C code as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Expr.h"
#include "llvm/Constant.h"
using namespace clang;
using namespace CodeGen;
llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E){
std::string S(E->getString()->getStrData(), E->getString()->getByteLength());
return CGM.GetAddrOfConstantCFString(S);
}

View File

@@ -1,339 +0,0 @@
//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Stmt nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// Statement Emission
//===----------------------------------------------------------------------===//
void CodeGenFunction::EmitStmt(const Stmt *S) {
assert(S && "Null statement?");
switch (S->getStmtClass()) {
default:
// Must be an expression in a stmt context. Emit the value (to get
// side-effects) and ignore the result.
if (const Expr *E = dyn_cast<Expr>(S)) {
if (!hasAggregateLLVMType(E->getType()))
EmitScalarExpr(E);
else if (E->getType()->isComplexType())
EmitComplexExpr(E);
else
EmitAggExpr(E, 0, false);
} else {
printf("Unimplemented stmt!\n");
S->dump(getContext().SourceMgr);
}
break;
case Stmt::NullStmtClass: break;
case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
case Stmt::BreakStmtClass: EmitBreakStmt(); break;
case Stmt::ContinueStmtClass: EmitContinueStmt(); break;
}
}
/// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
/// this captures the expression result of the last sub-statement and returns it
/// (for use by the statement expression extension).
RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
llvm::Value *AggLoc, bool isAggVol) {
// FIXME: handle vla's etc.
if (S.body_empty() || !isa<Expr>(S.body_back())) GetLast = false;
for (CompoundStmt::const_body_iterator I = S.body_begin(),
E = S.body_end()-GetLast; I != E; ++I)
EmitStmt(*I);
if (!GetLast)
return RValue::get(0);
return EmitAnyExpr(cast<Expr>(S.body_back()), AggLoc);
}
void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB) {
// Emit a branch from this block to the next one if this was a real block. If
// this was just a fall-through block after a terminator, don't emit it.
llvm::BasicBlock *LastBB = Builder.GetInsertBlock();
if (LastBB->getTerminator()) {
// If the previous block is already terminated, don't touch it.
} else if (LastBB->empty() && LastBB->getValueName() == 0) {
// If the last block was an empty placeholder, remove it now.
// TODO: cache and reuse these.
Builder.GetInsertBlock()->eraseFromParent();
} else {
// Otherwise, create a fall-through branch.
Builder.CreateBr(BB);
}
CurFn->getBasicBlockList().push_back(BB);
Builder.SetInsertPoint(BB);
}
void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
llvm::BasicBlock *NextBB = getBasicBlockForLabel(&S);
EmitBlock(NextBB);
EmitStmt(S.getSubStmt());
}
void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
Builder.CreateBr(getBasicBlockForLabel(S.getLabel()));
// Emit a block after the branch so that dead code after a goto has some place
// to go.
Builder.SetInsertPoint(new llvm::BasicBlock("", CurFn));
}
void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
// C99 6.8.4.1: The first substatement is executed if the expression compares
// unequal to 0. The condition must be a scalar type.
llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
llvm::BasicBlock *ContBlock = new llvm::BasicBlock("ifend");
llvm::BasicBlock *ThenBlock = new llvm::BasicBlock("ifthen");
llvm::BasicBlock *ElseBlock = ContBlock;
if (S.getElse())
ElseBlock = new llvm::BasicBlock("ifelse");
// Insert the conditional branch.
Builder.CreateCondBr(BoolCondVal, ThenBlock, ElseBlock);
// Emit the 'then' code.
EmitBlock(ThenBlock);
EmitStmt(S.getThen());
Builder.CreateBr(ContBlock);
// Emit the 'else' code if present.
if (const Stmt *Else = S.getElse()) {
EmitBlock(ElseBlock);
EmitStmt(Else);
Builder.CreateBr(ContBlock);
}
// Emit the continuation block for code after the if.
EmitBlock(ContBlock);
}
void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
// Emit the header for the loop, insert it, which will create an uncond br to
// it.
llvm::BasicBlock *LoopHeader = new llvm::BasicBlock("whilecond");
EmitBlock(LoopHeader);
// Evaluate the conditional in the while header. C99 6.8.5.1: The evaluation
// of the controlling expression takes place before each execution of the loop
// body.
llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
// TODO: while(1) is common, avoid extra exit blocks, etc. Be sure
// to correctly handle break/continue though.
// Create an exit block for when the condition fails, create a block for the
// body of the loop.
llvm::BasicBlock *ExitBlock = new llvm::BasicBlock("whileexit");
llvm::BasicBlock *LoopBody = new llvm::BasicBlock("whilebody");
// As long as the condition is true, go to the loop body.
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
// Store the blocks to use for break and continue.
BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
// Emit the loop body.
EmitBlock(LoopBody);
EmitStmt(S.getBody());
BreakContinueStack.pop_back();
// Cycle to the condition.
Builder.CreateBr(LoopHeader);
// Emit the exit block.
EmitBlock(ExitBlock);
}
void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
// TODO: "do {} while (0)" is common in macros, avoid extra blocks. Be sure
// to correctly handle break/continue though.
// Emit the body for the loop, insert it, which will create an uncond br to
// it.
llvm::BasicBlock *LoopBody = new llvm::BasicBlock("dobody");
llvm::BasicBlock *AfterDo = new llvm::BasicBlock("afterdo");
EmitBlock(LoopBody);
llvm::BasicBlock *DoCond = new llvm::BasicBlock("docond");
// Store the blocks to use for break and continue.
BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
// Emit the body of the loop into the block.
EmitStmt(S.getBody());
BreakContinueStack.pop_back();
EmitBlock(DoCond);
// C99 6.8.5.2: "The evaluation of the controlling expression takes place
// after each execution of the loop body."
// Evaluate the conditional in the while header.
// C99 6.8.5p2/p4: The first substatement is executed if the expression
// compares unequal to 0. The condition must be a scalar type.
llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
// As long as the condition is true, iterate the loop.
Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
// Emit the exit block.
EmitBlock(AfterDo);
}
void CodeGenFunction::EmitForStmt(const ForStmt &S) {
// FIXME: What do we do if the increment (f.e.) contains a stmt expression,
// which contains a continue/break?
// TODO: We could keep track of whether the loop body contains any
// break/continue statements and not create unnecessary blocks (like
// "afterfor" for a condless loop) if it doesn't.
// Evaluate the first part before the loop.
if (S.getInit())
EmitStmt(S.getInit());
// Start the loop with a block that tests the condition.
llvm::BasicBlock *CondBlock = new llvm::BasicBlock("forcond");
llvm::BasicBlock *AfterFor = new llvm::BasicBlock("afterfor");
EmitBlock(CondBlock);
// Evaluate the condition if present. If not, treat it as a non-zero-constant
// according to 6.8.5.3p2, aka, true.
if (S.getCond()) {
// C99 6.8.5p2/p4: The first substatement is executed if the expression
// compares unequal to 0. The condition must be a scalar type.
llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
// As long as the condition is true, iterate the loop.
llvm::BasicBlock *ForBody = new llvm::BasicBlock("forbody");
Builder.CreateCondBr(BoolCondVal, ForBody, AfterFor);
EmitBlock(ForBody);
} else {
// Treat it as a non-zero constant. Don't even create a new block for the
// body, just fall into it.
}
// If the for loop doesn't have an increment we can just use the
// condition as the continue block.
llvm::BasicBlock *ContinueBlock;
if (S.getInc())
ContinueBlock = new llvm::BasicBlock("forinc");
else
ContinueBlock = CondBlock;
// Store the blocks to use for break and continue.
BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
// If the condition is true, execute the body of the for stmt.
EmitStmt(S.getBody());
BreakContinueStack.pop_back();
if (S.getInc())
EmitBlock(ContinueBlock);
// If there is an increment, emit it next.
if (S.getInc())
EmitStmt(S.getInc());
// Finally, branch back up to the condition for the next iteration.
Builder.CreateBr(CondBlock);
// Emit the fall-through block.
EmitBlock(AfterFor);
}
/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
/// if the function returns void, or may be missing one if the function returns
/// non-void. Fun stuff :).
void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
// Emit the result value, even if unused, to evalute the side effects.
const Expr *RV = S.getRetValue();
QualType FnRetTy = CurFuncDecl->getType().getCanonicalType();
FnRetTy = cast<FunctionType>(FnRetTy)->getResultType();
if (FnRetTy->isVoidType()) {
// If the function returns void, emit ret void.
Builder.CreateRetVoid();
} else if (RV == 0) {
// Handle "return;" in a function that returns a value.
const llvm::Type *RetTy = CurFn->getFunctionType()->getReturnType();
if (RetTy == llvm::Type::VoidTy)
Builder.CreateRetVoid(); // struct return etc.
else
Builder.CreateRet(llvm::UndefValue::get(RetTy));
} else if (!hasAggregateLLVMType(RV->getType())) {
Builder.CreateRet(EmitScalarExpr(RV));
} else if (RV->getType()->isComplexType()) {
llvm::Value *SRetPtr = CurFn->arg_begin();
EmitComplexExprIntoAddr(RV, SRetPtr, false);
} else {
llvm::Value *SRetPtr = CurFn->arg_begin();
EmitAggExpr(RV, SRetPtr, false);
}
// Emit a block after the branch so that dead code after a return has some
// place to go.
EmitBlock(new llvm::BasicBlock());
}
void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
for (const Decl *Decl = S.getDecl(); Decl; Decl = Decl->getNextDeclarator())
EmitDecl(*Decl);
}
void CodeGenFunction::EmitBreakStmt() {
assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
Builder.CreateBr(Block);
EmitBlock(new llvm::BasicBlock());
}
void CodeGenFunction::EmitContinueStmt() {
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
Builder.CreateBr(Block);
EmitBlock(new llvm::BasicBlock());
}

View File

@@ -1,103 +0,0 @@
//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-function state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Analysis/Verifier.h"
using namespace clang;
using namespace CodeGen;
CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
: CGM(cgm), Target(CGM.getContext().Target) {}
ASTContext &CodeGenFunction::getContext() const {
return CGM.getContext();
}
llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) {
llvm::BasicBlock *&BB = LabelMap[S];
if (BB) return BB;
// Create, but don't insert, the new block.
return BB = new llvm::BasicBlock(S->getName());
}
const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
return CGM.getTypes().ConvertType(T);
}
bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
return !T->isRealType() && !T->isPointerType() && !T->isVoidType() &&
!T->isVectorType() && !T->isFunctionType();
}
void CodeGenFunction::GenerateCode(const FunctionDecl *FD) {
LLVMIntTy = ConvertType(getContext().IntTy);
LLVMPointerWidth = static_cast<unsigned>(
getContext().getTypeSize(getContext().getPointerType(getContext().VoidTy),
SourceLocation()));
CurFn = cast<llvm::Function>(CGM.GetAddrOfGlobalDecl(FD));
CurFuncDecl = FD;
// TODO: Set up linkage and many other things.
assert(CurFn->isDeclaration() && "Function already has body?");
llvm::BasicBlock *EntryBB = new llvm::BasicBlock("entry", CurFn);
Builder.SetInsertPoint(EntryBB);
// Create a marker to make it easy to insert allocas into the entryblock
// later.
llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty);
AllocaInsertPt = Builder.CreateBitCast(Undef,llvm::Type::Int32Ty, "allocapt");
// Emit allocs for param decls. Give the LLVM Argument nodes names.
llvm::Function::arg_iterator AI = CurFn->arg_begin();
// Name the struct return argument.
if (hasAggregateLLVMType(FD->getResultType())) {
AI->setName("agg.result");
++AI;
}
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i, ++AI) {
assert(AI != CurFn->arg_end() && "Argument mismatch!");
EmitParmDecl(*FD->getParamDecl(i), AI);
}
// Emit the function body.
EmitStmt(FD->getBody());
// Emit a return for code that falls off the end.
// FIXME: if this is C++ main, this should return 0.
if (CurFn->getReturnType() == llvm::Type::VoidTy)
Builder.CreateRetVoid();
else
Builder.CreateRet(llvm::UndefValue::get(CurFn->getReturnType()));
assert(BreakContinueStack.empty() &&
"mismatched push/pop in break/continue stack!");
// Verify that the function is well formed.
assert(!verifyFunction(*CurFn));
}

View File

@@ -1,401 +0,0 @@
//===--- CodeGenFunction.h - Per-Function state for LLVM CodeGen ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_CODEGENFUNCTION_H
#define CODEGEN_CODEGENFUNCTION_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/LLVMBuilder.h"
#include <vector>
namespace llvm {
class Module;
}
namespace clang {
class ASTContext;
class Decl;
class FunctionDecl;
class TargetInfo;
class QualType;
class FunctionTypeProto;
class Stmt;
class CompoundStmt;
class LabelStmt;
class GotoStmt;
class IfStmt;
class WhileStmt;
class DoStmt;
class ForStmt;
class ReturnStmt;
class DeclStmt;
class Expr;
class DeclRefExpr;
class StringLiteral;
class IntegerLiteral;
class FloatingLiteral;
class CharacterLiteral;
class TypesCompatibleExpr;
class ImplicitCastExpr;
class CastExpr;
class CallExpr;
class UnaryOperator;
class BinaryOperator;
class CompoundAssignOperator;
class ArraySubscriptExpr;
class OCUVectorElementExpr;
class ConditionalOperator;
class ChooseExpr;
class PreDefinedExpr;
class ObjCStringLiteral;
class BlockVarDecl;
class EnumConstantDecl;
class ParmVarDecl;
namespace CodeGen {
class CodeGenModule;
/// RValue - This trivial value class is used to represent the result of an
/// expression that is evaluated. It can be one of three things: either a
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
/// address of an aggregate value in memory.
class RValue {
llvm::Value *V1, *V2;
// TODO: Encode this into the low bit of pointer for more efficient
// return-by-value.
enum { Scalar, Complex, Aggregate } Flavor;
// FIXME: Aggregate rvalues need to retain information about whether they are
// volatile or not.
public:
bool isScalar() const { return Flavor == Scalar; }
bool isComplex() const { return Flavor == Complex; }
bool isAggregate() const { return Flavor == Aggregate; }
/// getScalar() - Return the Value* of this scalar value.
llvm::Value *getScalarVal() const {
assert(isScalar() && "Not a scalar!");
return V1;
}
/// getComplexVal - Return the real/imag components of this complex value.
///
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
return std::pair<llvm::Value *, llvm::Value *>(V1, V2);
}
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
llvm::Value *getAggregateAddr() const {
assert(isAggregate() && "Not an aggregate!");
return V1;
}
static RValue get(llvm::Value *V) {
RValue ER;
ER.V1 = V;
ER.Flavor = Scalar;
return ER;
}
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
RValue ER;
ER.V1 = V1;
ER.V2 = V2;
ER.Flavor = Complex;
return ER;
}
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
RValue ER;
ER.V1 = C.first;
ER.V2 = C.second;
ER.Flavor = Complex;
return ER;
}
static RValue getAggregate(llvm::Value *V) {
RValue ER;
ER.V1 = V;
ER.Flavor = Aggregate;
return ER;
}
};
/// LValue - This represents an lvalue references. Because C/C++ allow
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
/// bitrange.
class LValue {
// FIXME: Volatility. Restrict?
// alignment?
enum {
Simple, // This is a normal l-value, use getAddress().
VectorElt, // This is a vector element l-value (V[i]), use getVector*
BitField, // This is a bitfield l-value, use getBitfield*.
OCUVectorElt // This is an ocu vector subset, use getOCUVectorComp
} LVType;
llvm::Value *V;
union {
llvm::Value *VectorIdx; // Index into a vector subscript: V[i]
unsigned VectorElts; // Encoded OCUVector element subset: V.xyx
};
public:
bool isSimple() const { return LVType == Simple; }
bool isVectorElt() const { return LVType == VectorElt; }
bool isBitfield() const { return LVType == BitField; }
bool isOCUVectorElt() const { return LVType == OCUVectorElt; }
// simple lvalue
llvm::Value *getAddress() const { assert(isSimple()); return V; }
// vector elt lvalue
llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
// ocu vector elements.
llvm::Value *getOCUVectorAddr() const { assert(isOCUVectorElt()); return V; }
unsigned getOCUVectorElts() const {
assert(isOCUVectorElt());
return VectorElts;
}
static LValue MakeAddr(llvm::Value *V) {
LValue R;
R.LVType = Simple;
R.V = V;
return R;
}
static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx) {
LValue R;
R.LVType = VectorElt;
R.V = Vec;
R.VectorIdx = Idx;
return R;
}
static LValue MakeOCUVectorElt(llvm::Value *Vec, unsigned Elements) {
LValue R;
R.LVType = OCUVectorElt;
R.V = Vec;
R.VectorElts = Elements;
return R;
}
};
/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction {
public:
CodeGenModule &CGM; // Per-module state.
TargetInfo &Target;
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
llvm::LLVMBuilder Builder;
const FunctionDecl *CurFuncDecl;
llvm::Function *CurFn;
/// AllocaInsertPoint - This is an instruction in the entry block before which
/// we prefer to insert allocas.
llvm::Instruction *AllocaInsertPt;
const llvm::Type *LLVMIntTy;
unsigned LLVMPointerWidth;
private:
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
/// decls.
llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap;
/// LabelMap - This keeps track of the LLVM basic block for each C label.
llvm::DenseMap<const LabelStmt*, llvm::BasicBlock*> LabelMap;
// BreakContinueStack - This keeps track of where break and continue
// statements should jump to.
struct BreakContinue {
BreakContinue(llvm::BasicBlock *bb, llvm::BasicBlock *cb)
: BreakBlock(bb), ContinueBlock(cb) {}
llvm::BasicBlock *BreakBlock;
llvm::BasicBlock *ContinueBlock;
};
llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
public:
CodeGenFunction(CodeGenModule &cgm);
ASTContext &getContext() const;
void GenerateCode(const FunctionDecl *FD);
const llvm::Type *ConvertType(QualType T);
/// hasAggregateLLVMType - Return true if the specified AST type will map into
/// an aggregate LLVM type or is void.
static bool hasAggregateLLVMType(QualType T);
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
/// label maps to.
llvm::BasicBlock *getBasicBlockForLabel(const LabelStmt *S);
void EmitBlock(llvm::BasicBlock *BB);
//===--------------------------------------------------------------------===//
// Helpers
//===--------------------------------------------------------------------===//
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block.
llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
const char *Name = "tmp");
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *EvaluateExprAsBool(const Expr *E);
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
RValue EmitAnyExpr(const Expr *E, llvm::Value *AggLoc = 0,
bool isAggLocVolatile = false);
//===--------------------------------------------------------------------===//
// Declaration Emission
//===--------------------------------------------------------------------===//
void EmitDecl(const Decl &D);
void EmitEnumConstantDecl(const EnumConstantDecl &D);
void EmitBlockVarDecl(const BlockVarDecl &D);
void EmitLocalBlockVarDecl(const BlockVarDecl &D);
void EmitParmDecl(const ParmVarDecl &D, llvm::Value *Arg);
//===--------------------------------------------------------------------===//
// Statement Emission
//===--------------------------------------------------------------------===//
void EmitStmt(const Stmt *S);
RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
llvm::Value *AggLoc = 0, bool isAggVol = false);
void EmitLabelStmt(const LabelStmt &S);
void EmitGotoStmt(const GotoStmt &S);
void EmitIfStmt(const IfStmt &S);
void EmitWhileStmt(const WhileStmt &S);
void EmitDoStmt(const DoStmt &S);
void EmitForStmt(const ForStmt &S);
void EmitReturnStmt(const ReturnStmt &S);
void EmitDeclStmt(const DeclStmt &S);
void EmitBreakStmt();
void EmitContinueStmt();
//===--------------------------------------------------------------------===//
// LValue Expression Emission
//===--------------------------------------------------------------------===//
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue EmitLValue(const Expr *E);
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue EmitLoadOfLValue(LValue V, QualType LVType);
RValue EmitLoadOfOCUElementLValue(LValue V, QualType LVType);
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
void EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst, QualType Ty);
LValue EmitDeclRefLValue(const DeclRefExpr *E);
LValue EmitStringLiteralLValue(const StringLiteral *E);
LValue EmitPreDefinedLValue(const PreDefinedExpr *E);
LValue EmitUnaryOpLValue(const UnaryOperator *E);
LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
LValue EmitOCUVectorElementExpr(const OCUVectorElementExpr *E);
//===--------------------------------------------------------------------===//
// Scalar Expression Emission
//===--------------------------------------------------------------------===//
RValue EmitCallExpr(const CallExpr *E);
RValue EmitCallExpr(llvm::Value *Callee, const CallExpr *E);
RValue EmitBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
// Expressions are broken into three classes: scalar, complex, aggregate.
/// EmitScalarExpr - Emit the computation of the specified expression of
/// LLVM scalar type, returning the result.
llvm::Value *EmitScalarExpr(const Expr *E);
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
QualType DstTy);
/// EmitComplexToScalarConversion - Emit a conversion from the specified
/// complex type to the specified destination type, where the destination
/// type is an LLVM scalar type.
llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
QualType DstTy);
/// EmitAggExpr - Emit the computation of the specified expression of
/// aggregate type. The result is computed into DestPtr. Note that if
/// DestPtr is null, the value of the aggregate expression is not needed.
void EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest);
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, returning the result.
ComplexPairTy EmitComplexExpr(const Expr *E);
/// EmitComplexExprIntoAddr - Emit the computation of the specified expression
/// of complex type, storing into the specified Value*.
void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
bool DestIsVolatile);
/// LoadComplexFromAddr - Load a complex number from the specified address.
ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
};
} // end namespace CodeGen
} // end namespace clang
#endif

View File

@@ -1,209 +0,0 @@
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CodeGenFunction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
CodeGenModule::CodeGenModule(ASTContext &C, llvm::Module &M)
: Context(C), TheModule(M), Types(C, M), CFConstantStringClassRef(0) {}
llvm::Constant *CodeGenModule::GetAddrOfGlobalDecl(const Decl *D) {
// See if it is already in the map.
llvm::Constant *&Entry = GlobalDeclMap[D];
if (Entry) return Entry;
QualType ASTTy = cast<ValueDecl>(D)->getType();
const llvm::Type *Ty = getTypes().ConvertType(ASTTy);
if (isa<FunctionDecl>(D)) {
const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
// FIXME: param attributes for sext/zext etc.
return Entry = new llvm::Function(FTy, llvm::Function::ExternalLinkage,
D->getName(), &getModule());
}
assert(isa<FileVarDecl>(D) && "Unknown global decl!");
return Entry = new llvm::GlobalVariable(Ty, false,
llvm::GlobalValue::ExternalLinkage,
0, D->getName(), &getModule());
}
void CodeGenModule::EmitFunction(const FunctionDecl *FD) {
// If this is not a prototype, emit the body.
if (FD->getBody())
CodeGenFunction(*this).GenerateCode(FD);
}
void CodeGenModule::EmitGlobalVar(const FileVarDecl *D) {
llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalDecl(D));
// If the storage class is external and there is no initializer, just leave it
// as a declaration.
if (D->getStorageClass() == VarDecl::Extern && D->getInit() == 0)
return;
// Otherwise, convert the initializer, or use zero if appropriate.
llvm::Constant *Init = 0;
if (D->getInit() == 0) {
Init = llvm::Constant::getNullValue(GV->getType()->getElementType());
} else if (D->getType()->isIntegerType()) {
llvm::APSInt Value(static_cast<unsigned>(
getContext().getTypeSize(D->getInit()->getType(), SourceLocation())));
if (D->getInit()->isIntegerConstantExpr(Value, Context))
Init = llvm::ConstantInt::get(Value);
}
assert(Init && "FIXME: Global variable initializers unimp!");
GV->setInitializer(Init);
// Set the llvm linkage type as appropriate.
// FIXME: This isn't right. This should handle common linkage and other
// stuff.
switch (D->getStorageClass()) {
case VarDecl::Auto:
case VarDecl::Register:
assert(0 && "Can't have auto or register globals");
case VarDecl::None:
case VarDecl::Extern:
// todo: common
break;
case VarDecl::Static:
GV->setLinkage(llvm::GlobalVariable::InternalLinkage);
break;
}
}
/// EmitGlobalVarDeclarator - Emit all the global vars attached to the specified
/// declarator chain.
void CodeGenModule::EmitGlobalVarDeclarator(const FileVarDecl *D) {
for (; D; D = cast_or_null<FileVarDecl>(D->getNextDeclarator()))
EmitGlobalVar(D);
}
/// getBuiltinLibFunction
llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
if (BuiltinFunctions.size() <= BuiltinID)
BuiltinFunctions.resize(BuiltinID);
// Already available?
llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID];
if (FunctionSlot)
return FunctionSlot;
assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn");
// Get the name, skip over the __builtin_ prefix.
const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10;
// Get the type for the builtin.
QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context);
const llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(Type));
// FIXME: This has a serious problem with code like this:
// void abs() {}
// ... __builtin_abs(x);
// The two versions of abs will collide. The fix is for the builtin to win,
// and for the existing one to be turned into a constantexpr cast of the
// builtin. In the case where the existing one is a static function, it
// should just be renamed.
if (llvm::Function *Existing = getModule().getFunction(Name)) {
if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage())
return FunctionSlot = Existing;
assert(Existing == 0 && "FIXME: Name collision");
}
// FIXME: param attributes for sext/zext etc.
return FunctionSlot = new llvm::Function(Ty, llvm::Function::ExternalLinkage,
Name, &getModule());
}
llvm::Function *CodeGenModule::getMemCpyFn() {
if (MemCpyFn) return MemCpyFn;
llvm::Intrinsic::ID IID;
uint64_t Size; unsigned Align;
Context.Target.getPointerInfo(Size, Align, SourceLocation());
switch (Size) {
default: assert(0 && "Unknown ptr width");
case 32: IID = llvm::Intrinsic::memcpy_i32; break;
case 64: IID = llvm::Intrinsic::memcpy_i64; break;
}
return MemCpyFn = llvm::Intrinsic::getDeclaration(&TheModule, IID);
}
llvm::Constant *CodeGenModule::
GetAddrOfConstantCFString(const std::string &str) {
llvm::StringMapEntry<llvm::Constant *> &Entry =
CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
if (Entry.getValue())
return Entry.getValue();
std::vector<llvm::Constant*> Fields;
if (!CFConstantStringClassRef) {
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Ty = llvm::ArrayType::get(Ty, 0);
CFConstantStringClassRef =
new llvm::GlobalVariable(Ty, false,
llvm::GlobalVariable::ExternalLinkage, 0,
"__CFConstantStringClassReference",
&getModule());
}
// Class pointer.
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
llvm::Constant *C =
llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2);
Fields.push_back(C);
// Flags.
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Fields.push_back(llvm::ConstantInt::get(Ty, 1992));
// String pointer.
C = llvm::ConstantArray::get(str);
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, ".str", &getModule());
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
Fields.push_back(C);
// String length.
Ty = getTypes().ConvertType(getContext().LongTy);
Fields.push_back(llvm::ConstantInt::get(Ty, str.length()));
// The struct.
Ty = getTypes().ConvertType(getContext().getCFConstantStringType());
C = llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Fields);
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalVariable::InternalLinkage,
C, "", &getModule());
Entry.setValue(C);
return C;
}

View File

@@ -1,75 +0,0 @@
//===--- CodeGenModule.h - Per-Module state for LLVM CodeGen --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-translation-unit state used for llvm translation.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_CODEGENMODULE_H
#define CODEGEN_CODEGENMODULE_H
#include "CodeGenTypes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
namespace llvm {
class Module;
class Constant;
class Function;
}
namespace clang {
class ASTContext;
class FunctionDecl;
class Decl;
class FileVarDecl;
namespace CodeGen {
/// CodeGenModule - This class organizes the cross-module state that is used
/// while generating LLVM code.
class CodeGenModule {
ASTContext &Context;
llvm::Module &TheModule;
CodeGenTypes Types;
llvm::Function *MemCpyFn;
llvm::DenseMap<const Decl*, llvm::Constant*> GlobalDeclMap;
llvm::StringMap<llvm::Constant*> CFConstantStringMap;
llvm::Constant *CFConstantStringClassRef;
std::vector<llvm::Function *> BuiltinFunctions;
public:
CodeGenModule(ASTContext &C, llvm::Module &M);
ASTContext &getContext() const { return Context; }
llvm::Module &getModule() const { return TheModule; }
CodeGenTypes &getTypes() { return Types; }
llvm::Constant *GetAddrOfGlobalDecl(const Decl *D);
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
///
llvm::Function *getBuiltinLibFunction(unsigned BuiltinID);
llvm::Constant *GetAddrOfConstantCFString(const std::string& str);
llvm::Function *getMemCpyFn();
void EmitFunction(const FunctionDecl *FD);
void EmitGlobalVar(const FileVarDecl *D);
void EmitGlobalVarDeclarator(const FileVarDecl *D);
void PrintStats() {}
};
} // end namespace CodeGen
} // end namespace clang
#endif

View File

@@ -1,207 +0,0 @@
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
using namespace clang;
using namespace CodeGen;
CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M)
: Context(Ctx), Target(Ctx.Target), TheModule(M) {
}
/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
// FIXME: Cache these, move the CodeGenModule, expand, etc.
const clang::Type &Ty = *T.getCanonicalType();
switch (Ty.getTypeClass()) {
case Type::TypeName: // typedef isn't canonical.
case Type::TypeOfExp: // typeof isn't canonical.
case Type::TypeOfTyp: // typeof isn't canonical.
assert(0 && "Non-canonical type, shouldn't happen");
case Type::Builtin: {
switch (cast<BuiltinType>(Ty).getKind()) {
case BuiltinType::Void:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
return llvm::IntegerType::get(8);
case BuiltinType::Bool:
// FIXME: This is very strange. We want scalars to be i1, but in memory
// they can be i1 or i32. Should the codegen handle this issue?
return llvm::Type::Int1Ty;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return llvm::IntegerType::get(
static_cast<unsigned>(Context.getTypeSize(T, SourceLocation())));
case BuiltinType::Float: return llvm::Type::FloatTy;
case BuiltinType::Double: return llvm::Type::DoubleTy;
case BuiltinType::LongDouble:
// FIXME: mapping long double onto double.
return llvm::Type::DoubleTy;
}
break;
}
case Type::Complex: {
std::vector<const llvm::Type*> Elts;
Elts.push_back(ConvertType(cast<ComplexType>(Ty).getElementType()));
Elts.push_back(Elts[0]);
return llvm::StructType::get(Elts);
}
case Type::Pointer: {
const PointerType &P = cast<PointerType>(Ty);
return llvm::PointerType::get(ConvertType(P.getPointeeType()));
}
case Type::Reference: {
const ReferenceType &R = cast<ReferenceType>(Ty);
return llvm::PointerType::get(ConvertType(R.getReferenceeType()));
}
case Type::VariableArray: {
const VariableArrayType &A = cast<VariableArrayType>(Ty);
assert(A.getSizeModifier() == ArrayType::Normal &&
A.getIndexTypeQualifier() == 0 &&
"FIXME: We only handle trivial array types so far!");
if (A.getSizeExpr() == 0) {
// int X[] -> [0 x int]
return llvm::ArrayType::get(ConvertType(A.getElementType()), 0);
} else {
assert(0 && "FIXME: VLAs not implemented yet!");
}
}
case Type::ConstantArray: {
const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
const llvm::Type *EltTy = ConvertType(A.getElementType());
return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
}
case Type::OCUVector:
case Type::Vector: {
const VectorType &VT = cast<VectorType>(Ty);
return llvm::VectorType::get(ConvertType(VT.getElementType()),
VT.getNumElements());
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
const FunctionType &FP = cast<FunctionType>(Ty);
const llvm::Type *ResultType;
if (FP.getResultType()->isVoidType())
ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
else
ResultType = ConvertType(FP.getResultType());
// FIXME: Convert argument types.
bool isVarArg;
std::vector<const llvm::Type*> ArgTys;
// Struct return passes the struct byref.
if (!ResultType->isFirstClassType() && ResultType != llvm::Type::VoidTy) {
ArgTys.push_back(llvm::PointerType::get(ResultType));
ResultType = llvm::Type::VoidTy;
}
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
DecodeArgumentTypes(*FTP, ArgTys);
isVarArg = FTP->isVariadic();
} else {
isVarArg = true;
}
return llvm::FunctionType::get(ResultType, ArgTys, isVarArg, 0);
}
case Type::Tagged:
const TagType &TT = cast<TagType>(Ty);
const TagDecl *TD = TT.getDecl();
llvm::Type *&ResultType = TagDeclTypes[TD];
if (ResultType)
return ResultType;
if (!TD->isDefinition()) {
ResultType = llvm::OpaqueType::get();
} else if (TD->getKind() == Decl::Enum) {
return ConvertType(cast<EnumDecl>(TD)->getIntegerType());
} else if (TD->getKind() == Decl::Struct) {
const RecordDecl *RD = cast<const RecordDecl>(TD);
std::vector<const llvm::Type*> Fields;
for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
Fields.push_back(ConvertType(RD->getMember(i)->getType()));
ResultType = llvm::StructType::get(Fields);
} else if (TD->getKind() == Decl::Union) {
const RecordDecl *RD = cast<const RecordDecl>(TD);
// Just use the largest element of the union, breaking ties with the
// highest aligned member.
std::vector<const llvm::Type*> Fields;
if (RD->getNumMembers() != 0) {
std::pair<uint64_t, unsigned> MaxElt =
Context.getTypeInfo(RD->getMember(0)->getType(), SourceLocation());
unsigned MaxEltNo = 0;
for (unsigned i = 1, e = RD->getNumMembers(); i != e; ++i) {
std::pair<uint64_t, unsigned> EltInfo =
Context.getTypeInfo(RD->getMember(i)->getType(), SourceLocation());
if (EltInfo.first > MaxElt.first ||
(EltInfo.first == MaxElt.first &&
EltInfo.second > MaxElt.second)) {
MaxElt = EltInfo;
MaxEltNo = i;
}
}
Fields.push_back(ConvertType(RD->getMember(MaxEltNo)->getType()));
}
ResultType = llvm::StructType::get(Fields);
} else {
assert(0 && "FIXME: Implement tag decl kind!");
}
std::string TypeName(TD->getKindName());
TypeName += '.';
TypeName += TD->getName();
TheModule.addTypeName(TypeName, ResultType);
return ResultType;
}
// FIXME: implement.
return llvm::OpaqueType::get();
}
void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
std::vector<const llvm::Type*> &ArgTys) {
for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
const llvm::Type *Ty = ConvertType(FTP.getArgType(i));
if (Ty->isFirstClassType())
ArgTys.push_back(Ty);
else
ArgTys.push_back(llvm::PointerType::get(Ty));
}
}

View File

@@ -1,55 +0,0 @@
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_CODEGENTYPES_H
#define CODEGEN_CODEGENTYPES_H
#include "llvm/ADT/DenseMap.h"
#include <vector>
namespace llvm {
class Module;
class Type;
}
namespace clang {
class ASTContext;
class TagDecl;
class TargetInfo;
class QualType;
class FunctionTypeProto;
namespace CodeGen {
/// CodeGenTypes - This class organizes the cross-module state that is used
/// while lowering AST types to LLVM types.
class CodeGenTypes {
ASTContext &Context;
TargetInfo &Target;
llvm::Module& TheModule;
llvm::DenseMap<const TagDecl*, llvm::Type*> TagDeclTypes;
public:
CodeGenTypes(ASTContext &Ctx, llvm::Module &M);
TargetInfo &getTarget() const { return Target; }
const llvm::Type *ConvertType(QualType T);
void DecodeArgumentTypes(const FunctionTypeProto &FTP,
std::vector<const llvm::Type*> &ArgTys);
};
} // end namespace CodeGen
} // end namespace clang
#endif

View File

@@ -1,23 +0,0 @@
##===- clang/CodeGen/Makefile ------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Chris Lattner and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements the AST -> LLVM code generation library for the
# C-Language front-end.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME := clangCodeGen
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,45 +0,0 @@
//===--- ModuleBuilder.cpp - Emit LLVM Code from ASTs ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This builds an AST and converts it to LLVM Code.
//
//===----------------------------------------------------------------------===//
#include "clang/CodeGen/ModuleBuilder.h"
#include "CodeGenModule.h"
using namespace clang;
/// Init - Create an ModuleBuilder with the specified ASTContext.
clang::CodeGen::BuilderTy *
clang::CodeGen::Init(ASTContext &Context, llvm::Module &M) {
return new CodeGenModule(Context, M);
}
void clang::CodeGen::Terminate(BuilderTy *B) {
delete static_cast<CodeGenModule*>(B);
}
/// CodeGenFunction - Convert the AST node for a FunctionDecl into LLVM.
///
void clang::CodeGen::CodeGenFunction(BuilderTy *B, FunctionDecl *D) {
static_cast<CodeGenModule*>(B)->EmitFunction(D);
}
/// CodeGenGlobalVar - Emit the specified global variable to LLVM.
void clang::CodeGen::CodeGenGlobalVar(BuilderTy *Builder, FileVarDecl *D) {
static_cast<CodeGenModule*>(Builder)->EmitGlobalVarDeclarator(D);
}
/// PrintStats - Emit statistic information to stderr.
///
void clang::CodeGen::PrintStats(BuilderTy *B) {
static_cast<CodeGenModule*>(B)->PrintStats();
}

View File

@@ -1,282 +0,0 @@
//===--- ASTStreamers.cpp - ASTStreamer Drivers ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ASTStreamer drivers.
//
//===----------------------------------------------------------------------===//
#include "ASTStreamers.h"
#include "clang/AST/AST.h"
#include "clang/AST/CFG.h"
#include "clang/Analysis/LiveVariables.h"
#include "clang/Analysis/LocalCheckers.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/ASTStreamer.h"
using namespace clang;
void clang::BuildASTs(Preprocessor &PP, unsigned MainFileID, bool Stats) {
// collect global stats on Decls/Stmts (until we have a module streamer)
if (Stats) {
Decl::CollectingStats(true);
Stmt::CollectingStats(true);
}
ASTContext Context(PP.getSourceManager(), PP.getTargetInfo(),
PP.getIdentifierTable());
ASTStreamerTy *Streamer = ASTStreamer_Init(PP, Context, MainFileID);
while (ASTStreamer_ReadTopLevelDecl(Streamer))
/* keep reading */;
if (Stats) {
fprintf(stderr, "\nSTATISTICS:\n");
ASTStreamer_PrintStats(Streamer);
Context.PrintStats();
Decl::PrintStats();
Stmt::PrintStats();
}
ASTStreamer_Terminate(Streamer);
}
static void PrintFunctionDeclStart(FunctionDecl *FD) {
bool HasBody = FD->getBody();
fprintf(stderr, "\n");
switch (FD->getStorageClass()) {
default: assert(0 && "Unknown storage class");
case FunctionDecl::None: break;
case FunctionDecl::Extern: fprintf(stderr, "extern "); break;
case FunctionDecl::Static: fprintf(stderr, "static "); break;
}
if (FD->isInline())
fprintf(stderr, "inline ");
std::string Proto = FD->getName();
FunctionType *AFT = cast<FunctionType>(FD->getType());
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(AFT)) {
Proto += "(";
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
if (i) Proto += ", ";
std::string ParamStr;
if (HasBody) ParamStr = FD->getParamDecl(i)->getName();
FT->getArgType(i).getAsStringInternal(ParamStr);
Proto += ParamStr;
}
if (FT->isVariadic()) {
if (FD->getNumParams()) Proto += ", ";
Proto += "...";
}
Proto += ")";
} else {
assert(isa<FunctionTypeNoProto>(AFT));
Proto += "()";
}
AFT->getResultType().getAsStringInternal(Proto);
fprintf(stderr, "%s", Proto.c_str());
if (!FD->getBody())
fprintf(stderr, ";\n");
// Doesn't print the body.
}
static void PrintTypeDefDecl(TypedefDecl *TD) {
std::string S = TD->getName();
TD->getUnderlyingType().getAsStringInternal(S);
fprintf(stderr, "typedef %s;\n", S.c_str());
}
static void PrintObjcInterfaceDecl(ObjcInterfaceDecl *OID) {
std::string S = OID->getName();
fprintf(stderr, "@interface %s;\n", S.c_str());
// FIXME: implement the rest...
}
void clang::PrintASTs(Preprocessor &PP, unsigned MainFileID, bool Stats) {
ASTContext Context(PP.getSourceManager(), PP.getTargetInfo(),
PP.getIdentifierTable());
ASTStreamerTy *Streamer = ASTStreamer_Init(PP, Context, MainFileID);
while (Decl *D = ASTStreamer_ReadTopLevelDecl(Streamer)) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
PrintFunctionDeclStart(FD);
if (FD->getBody()) {
fprintf(stderr, " ");
FD->getBody()->dumpPretty();
fprintf(stderr, "\n");
}
} else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
PrintTypeDefDecl(TD);
} else if (ObjcInterfaceDecl *OID = dyn_cast<ObjcInterfaceDecl>(D)) {
PrintObjcInterfaceDecl(OID);
} else {
fprintf(stderr, "Read top-level variable decl: '%s'\n", D->getName());
}
}
if (Stats) {
fprintf(stderr, "\nSTATISTICS:\n");
ASTStreamer_PrintStats(Streamer);
Context.PrintStats();
}
ASTStreamer_Terminate(Streamer);
}
void clang::DumpASTs(Preprocessor &PP, unsigned MainFileID, bool Stats) {
ASTContext Context(PP.getSourceManager(), PP.getTargetInfo(),
PP.getIdentifierTable());
ASTStreamerTy *Streamer = ASTStreamer_Init(PP, Context, MainFileID);
while (Decl *D = ASTStreamer_ReadTopLevelDecl(Streamer)) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
PrintFunctionDeclStart(FD);
if (FD->getBody()) {
fprintf(stderr, "\n");
FD->getBody()->dumpAll(PP.getSourceManager());
fprintf(stderr, "\n");
}
} else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
PrintTypeDefDecl(TD);
} else {
fprintf(stderr, "Read top-level variable decl: '%s'\n", D->getName());
}
}
if (Stats) {
fprintf(stderr, "\nSTATISTICS:\n");
ASTStreamer_PrintStats(Streamer);
Context.PrintStats();
}
ASTStreamer_Terminate(Streamer);
}
//===----------------------------------------------------------------------===//
// CFGVisitor & VisitCFGs - Boilerplate interface and logic to visit
// the CFGs for all function definitions.
namespace {
class CFGVisitor {
public:
virtual ~CFGVisitor() {}
virtual void VisitCFG(CFG& C) = 0;
virtual bool printFuncDeclStart() { return true; }
};
} // end anonymous namespace
static void VisitCFGs(CFGVisitor& Visitor, Preprocessor& PP,
unsigned MainFileID, bool Stats) {
bool printFDecl = Visitor.printFuncDeclStart();
ASTContext Context(PP.getSourceManager(), PP.getTargetInfo(),
PP.getIdentifierTable());
ASTStreamerTy *Streamer = ASTStreamer_Init(PP, Context, MainFileID);
while (Decl *D = ASTStreamer_ReadTopLevelDecl(Streamer)) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FD->getBody()) {
if (printFDecl) {
PrintFunctionDeclStart(FD);
fprintf(stderr,"\n");
}
if (CFG* C = CFG::buildCFG(FD->getBody())) {
Visitor.VisitCFG(*C);
delete C;
}
else
fprintf(stderr," Error processing CFG.\n");
}
}
if (Stats) {
fprintf(stderr, "\nSTATISTICS:\n");
ASTStreamer_PrintStats(Streamer);
Context.PrintStats();
}
ASTStreamer_Terminate(Streamer);
}
//===----------------------------------------------------------------------===//
// DumpCFGs - Dump CFGs to stderr or visualize with Graphviz
namespace {
class CFGDumper : public CFGVisitor {
const bool UseGraphviz;
public:
CFGDumper(bool use_graphviz) : UseGraphviz(use_graphviz) {}
virtual void VisitCFG(CFG& C) {
if (UseGraphviz) C.viewCFG();
else C.dump();
}
};
} // end anonymous namespace
void clang::DumpCFGs(Preprocessor &PP, unsigned MainFileID,
bool Stats, bool use_graphviz) {
CFGDumper Visitor(use_graphviz);
VisitCFGs(Visitor,PP,MainFileID,Stats);
}
//===----------------------------------------------------------------------===//
// AnalyzeLiveVariables - perform live variable analysis and dump results
namespace {
class LivenessVisitor : public CFGVisitor {
Preprocessor& PP;
public:
LivenessVisitor(Preprocessor& pp) : PP(pp) {}
virtual void VisitCFG(CFG& C) {
LiveVariables L;
L.runOnCFG(C);
L.dumpBlockLiveness(PP.getSourceManager());
L.dumpVarLiveness(PP.getSourceManager());
}
};
} // end anonymous namespace
void clang::AnalyzeLiveVariables(Preprocessor &PP, unsigned MainFileID) {
LivenessVisitor Visitor(PP);
VisitCFGs(Visitor,PP,MainFileID,false);
}
//===----------------------------------------------------------------------===//
// RunDeadStores - run checker to locate dead stores in a function
namespace {
class DeadStoreVisitor : public CFGVisitor {
Preprocessor& PP;
public:
DeadStoreVisitor(Preprocessor& pp) : PP(pp) {}
virtual void VisitCFG(CFG& C) { CheckDeadStores(C,PP); }
virtual bool printFuncDeclStart() { return false; }
};
} // end anonymous namespace
void clang::RunDeadStoresCheck(Preprocessor &PP,unsigned MainFileID,bool Stats){
DeadStoreVisitor Visitor(PP);
VisitCFGs(Visitor,PP,MainFileID,Stats);
}

View File

@@ -1,36 +0,0 @@
//===--- ASTStreamers.h - ASTStreamer Drivers -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// AST Streamers.
//
//===----------------------------------------------------------------------===//
#ifndef DRIVER_ASTSTREAMERS_H_
#define DRIVER_ASTSTREAMERS_H_
namespace clang {
class Preprocessor;
class FunctionDecl;
class TypedefDecl;
void BuildASTs(Preprocessor &PP, unsigned MainFileID, bool Stats);
void PrintASTs(Preprocessor &PP, unsigned MainFileID, bool Stats);
void DumpASTs(Preprocessor &PP, unsigned MainFileID, bool Stats);
void DumpCFGs(Preprocessor &PP, unsigned MainFileID,
bool Stats, bool use_graphviz = false);
void AnalyzeLiveVariables(Preprocessor &PP, unsigned MainFileID);
void RunDeadStoresCheck(Preprocessor &PP, unsigned MainFileID, bool Stats);
} // end clang namespace
#endif

View File

@@ -1,237 +0,0 @@
//===--- DiagChecker.cpp - Diagnostic Checking Functions ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Process the input files and check that the diagnostic messages are expected.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "ASTStreamers.h"
#include "TextDiagnosticBuffer.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
typedef TextDiagnosticBuffer::DiagList DiagList;
typedef TextDiagnosticBuffer::const_iterator const_diag_iterator;
// USING THE DIAGNOSTIC CHECKER:
//
// Indicating that a line expects an error or a warning is simple. Put a comment
// on the line that has the diagnostic, use "expected-{error,warning}" to tag
// if it's an expected error or warning, and place the expected text between {{
// and }} markers. The full text doesn't have to be included, only enough to
// ensure that the correct diagnostic was emitted.
//
// Here's an example:
//
// int A = B; // expected-error {{use of undeclared identifier 'B'}}
//
// You can place as many diagnostics on one line as you wish. To make the code
// more readable, you can use slash-newline to separate out the diagnostics.
static const char * const ExpectedErrStr = "expected-error";
static const char * const ExpectedWarnStr = "expected-warning";
/// FindDiagnostics - Go through the comment and see if it indicates expected
/// diagnostics. If so, then put them in a diagnostic list.
///
static void FindDiagnostics(const std::string &Comment,
DiagList &ExpectedDiags,
SourceManager &SourceMgr,
SourceLocation Pos,
const char * const ExpectedStr) {
// Find all expected diagnostics
typedef std::string::size_type size_type;
size_type ColNo = std::string::npos;
for (;;) {
ColNo = Comment.find(ExpectedStr, ColNo);
if (ColNo == std::string::npos) break;
size_type OpenDiag = Comment.find_first_of("{{", ColNo);
if (OpenDiag == std::string::npos) {
fprintf(stderr,
"oops:%d: Cannot find beginning of expected error string\n",
SourceMgr.getLogicalLineNumber(Pos));
break;
}
OpenDiag += 2;
size_type CloseDiag = Comment.find_first_of("}}", OpenDiag);
if (CloseDiag == std::string::npos) {
fprintf(stderr,
"oops:%d: Cannot find end of expected error string\n",
SourceMgr.getLogicalLineNumber(Pos));
break;
}
std::string Msg(Comment.substr(OpenDiag, CloseDiag - OpenDiag));
ExpectedDiags.push_back(std::make_pair(Pos, Msg));
ColNo = CloseDiag + 2;
}
}
/// FindExpectedDiags - Lex the file to finds all of the expected errors and
/// warnings.
static void FindExpectedDiags(Preprocessor &PP, unsigned MainFileID,
DiagList &ExpectedErrors,
DiagList &ExpectedWarnings) {
// Return comments as tokens, this is how we find expected diagnostics.
PP.SetCommentRetentionState(true, true);
// Enter the cave.
PP.EnterSourceFile(MainFileID, 0, true);
// Turn off all warnings from relexing or preprocessing.
PP.getDiagnostics().setWarnOnExtensions(false);
PP.getDiagnostics().setErrorOnExtensions(false);
for (unsigned i = 0; i != diag::NUM_DIAGNOSTICS; ++i)
if (PP.getDiagnostics().isNoteWarningOrExtension((diag::kind)i))
PP.getDiagnostics().setDiagnosticMapping((diag::kind)i, diag::MAP_IGNORE);
Token Tok;
do {
PP.Lex(Tok);
if (Tok.getKind() == tok::comment) {
std::string Comment = PP.getSpelling(Tok);
// Find all expected errors
FindDiagnostics(Comment, ExpectedErrors,PP.getSourceManager(),
Tok.getLocation(), ExpectedErrStr);
// Find all expected warnings
FindDiagnostics(Comment, ExpectedWarnings, PP.getSourceManager(),
Tok.getLocation(), ExpectedWarnStr);
}
} while (Tok.getKind() != tok::eof);
PP.SetCommentRetentionState(false, false);
}
/// PrintProblem - This takes a diagnostic map of the delta between expected and
/// seen diagnostics. If there's anything in it, then something unexpected
/// happened. Print the map out in a nice format and return "true". If the map
/// is empty and we're not going to print things, then return "false".
///
static bool PrintProblem(SourceManager &SourceMgr,
const_diag_iterator diag_begin,
const_diag_iterator diag_end,
const char *Msg) {
if (diag_begin == diag_end) return false;
fprintf(stderr, "%s\n", Msg);
for (const_diag_iterator I = diag_begin, E = diag_end; I != E; ++I)
fprintf(stderr, " Line %d: %s\n",
SourceMgr.getLogicalLineNumber(I->first),
I->second.c_str());
return true;
}
/// CompareDiagLists - Compare two diangnostic lists and return the difference
/// between them.
///
static bool CompareDiagLists(SourceManager &SourceMgr,
const_diag_iterator d1_begin,
const_diag_iterator d1_end,
const_diag_iterator d2_begin,
const_diag_iterator d2_end,
const char *Msg) {
DiagList DiffList;
for (const_diag_iterator I = d1_begin, E = d1_end; I != E; ++I) {
unsigned LineNo1 = SourceMgr.getLogicalLineNumber(I->first);
const std::string &Diag1 = I->second;
bool Found = false;
for (const_diag_iterator II = d2_begin, IE = d2_end; II != IE; ++II) {
unsigned LineNo2 = SourceMgr.getLogicalLineNumber(II->first);
if (LineNo1 != LineNo2) continue;
const std::string &Diag2 = II->second;
if (Diag2.find(Diag1) != std::string::npos ||
Diag1.find(Diag2) != std::string::npos) {
Found = true;
break;
}
}
if (!Found)
DiffList.push_back(std::make_pair(I->first, Diag1));
}
return PrintProblem(SourceMgr, DiffList.begin(), DiffList.end(), Msg);
}
/// CheckResults - This compares the expected results to those that
/// were actually reported. It emits any discrepencies. Return "true" if there
/// were problems. Return "false" otherwise.
///
static bool CheckResults(Preprocessor &PP,
const DiagList &ExpectedErrors,
const DiagList &ExpectedWarnings) {
const TextDiagnosticBuffer &Diags =
static_cast<const TextDiagnosticBuffer&>(PP.getDiagnostics().getClient());
SourceManager &SourceMgr = PP.getSourceManager();
// We want to capture the delta between what was expected and what was
// seen.
//
// Expected \ Seen - set expected but not seen
// Seen \ Expected - set seen but not expected
bool HadProblem = false;
// See if there were errors that were expected but not seen.
HadProblem |= CompareDiagLists(SourceMgr,
ExpectedErrors.begin(), ExpectedErrors.end(),
Diags.err_begin(), Diags.err_end(),
"Errors expected but not seen:");
// See if there were errors that were seen but not expected.
HadProblem |= CompareDiagLists(SourceMgr,
Diags.err_begin(), Diags.err_end(),
ExpectedErrors.begin(), ExpectedErrors.end(),
"Errors seen but not expected:");
// See if there were warnings that were expected but not seen.
HadProblem |= CompareDiagLists(SourceMgr,
ExpectedWarnings.begin(),
ExpectedWarnings.end(),
Diags.warn_begin(), Diags.warn_end(),
"Warnings expected but not seen:");
// See if there were warnings that were seen but not expected.
HadProblem |= CompareDiagLists(SourceMgr,
Diags.warn_begin(), Diags.warn_end(),
ExpectedWarnings.begin(),
ExpectedWarnings.end(),
"Warnings seen but not expected:");
return HadProblem;
}
/// CheckDiagnostics - Implement the -parse-ast-check diagnostic verifier.
bool clang::CheckDiagnostics(Preprocessor &PP, unsigned MainFileID) {
// Parse the specified input file.
BuildASTs(PP, MainFileID, false);
// Gather the set of expected diagnostics.
DiagList ExpectedErrors, ExpectedWarnings;
FindExpectedDiags(PP, MainFileID, ExpectedErrors, ExpectedWarnings);
// Check that the expected diagnostics occurred.
return CheckResults(PP, ExpectedErrors, ExpectedWarnings);
}

View File

@@ -1,71 +0,0 @@
//===--- LLVMCodegen.cpp - Emit LLVM Code from ASTs -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This builds an AST and converts it to LLVM Code.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Sema/ASTStreamer.h"
#include "clang/AST/AST.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/Module.h"
#include <iostream>
using namespace clang;
//===----------------------------------------------------------------------===//
// LLVM Emission
//===----------------------------------------------------------------------===//
void clang::EmitLLVMFromASTs(Preprocessor &PP, unsigned MainFileID,
bool PrintStats) {
Diagnostic &Diags = PP.getDiagnostics();
// Create the streamer to read the file.
ASTContext Context(PP.getSourceManager(), PP.getTargetInfo(),
PP.getIdentifierTable());
ASTStreamerTy *Streamer = ASTStreamer_Init(PP, Context, MainFileID);
// Create the module to codegen into.
llvm::Module M("foo");
CodeGen::BuilderTy *Builder = CodeGen::Init(Context, M);
while (Decl *D = ASTStreamer_ReadTopLevelDecl(Streamer)) {
// If an error occurred, stop code generation, but continue parsing and
// semantic analysis (to ensure all warnings and errors are emitted).
if (Diags.hasErrorOccurred())
continue;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
CodeGen::CodeGenFunction(Builder, FD);
} else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(D)) {
CodeGen::CodeGenGlobalVar(Builder, FVD);
} else {
assert(isa<TypedefDecl>(D) && "Only expected typedefs here");
// don't codegen for now, eventually pass down for debug info.
//std::cerr << "Read top-level typedef decl: '" << D->getName() << "'\n";
}
}
if (PrintStats) {
std::cerr << "\nSTATISTICS:\n";
CodeGen::PrintStats(Builder);
ASTStreamer_PrintStats(Streamer);
Context.PrintStats();
}
CodeGen::Terminate(Builder);
ASTStreamer_Terminate(Streamer);
// Print the generated code.
M.print(std::cout);
}

View File

@@ -1,8 +0,0 @@
LEVEL = ../../..
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
CXXFLAGS = -fno-rtti
TOOLNAME = clang
USEDLIBS = clangCodeGen.a clangAnalysis.a clangSEMA.a clangAST.a clangParse.a clangLex.a clangBasic.a LLVMCore.a LLVMSupport.a LLVMSystem.a
include $(LEVEL)/Makefile.common

View File

@@ -1,24 +0,0 @@
//===--- PPCBuiltins.def - PowerPC Builtin function database ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PowerPC-specific builtin function database. Users of
// this file must define the BUILTIN macro to make use of this information.
//
//===----------------------------------------------------------------------===//
// FIXME: this needs to be the full list supported by GCC. Right now, I'm just
// adding stuff on demand.
// The format of this database matches clang/AST/Builtins.def.
// This is just a placeholder, the types and attributes are wrong.
BUILTIN(__builtin_altivec_abs_v4sf , "ii" , "nc")
// FIXME: Obviously incomplete.
#undef BUILTIN

View File

@@ -1,55 +0,0 @@
//===--- PrintParserActions.cpp - Implement -parse-print-callbacks mode ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This code simply runs the preprocessor on the input file and prints out the
// result. This is the traditional behavior of the -E option.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "clang/Lex/IdentifierTable.h"
#include "clang/Parse/Action.h"
#include "clang/Parse/DeclSpec.h"
#include <iostream>
using namespace clang;
namespace {
class ParserPrintActions : public MinimalAction {
/// ParseDeclarator - This callback is invoked when a declarator is parsed
/// and 'Init' specifies the initializer if any. This is for things like:
/// "int X = 4" or "typedef int foo".
virtual DeclTy *ParseDeclarator(Scope *S, Declarator &D,
DeclTy *LastInGroup) {
std::cout << "ParseDeclarator ";
if (IdentifierInfo *II = D.getIdentifier()) {
std::cout << "'" << II->getName() << "'";
} else {
std::cout << "<anon>";
}
std::cout << "\n";
// Pass up to EmptyActions so that the symbol table is maintained right.
return MinimalAction::ParseDeclarator(S, D, LastInGroup);
}
/// PopScope - This callback is called immediately before the specified scope
/// is popped and deleted.
virtual void PopScope(SourceLocation Loc, Scope *S) {
std::cout << "PopScope\n";
// Pass up to EmptyActions so that the symbol table is maintained right.
MinimalAction::PopScope(Loc, S);
}
};
}
MinimalAction *clang::CreatePrintParserActionsAction() {
return new ParserPrintActions();
}

View File

@@ -1,574 +0,0 @@
//===--- PrintPreprocessedOutput.cpp - Implement the -E mode --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This code simply runs the preprocessor on the input file and prints out the
// result. This is the traditional behavior of the -E option.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/Pragma.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/config.h"
#include <cstdio>
using namespace clang;
//===----------------------------------------------------------------------===//
// Simple buffered I/O
//===----------------------------------------------------------------------===//
//
// Empirically, iostream is over 30% slower than stdio for this workload, and
// stdio itself isn't very well suited. The problem with stdio is use of
// putchar_unlocked. We have many newline characters that need to be emitted,
// but stdio needs to do extra checks to handle line buffering mode. These
// extra checks make putchar_unlocked fall off its inlined code path, hitting
// slow system code. In practice, using 'write' directly makes 'clang -E -P'
// about 10% faster than using the stdio path on darwin.
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#else
#define USE_STDIO 1
#endif
static char *OutBufStart = 0, *OutBufEnd, *OutBufCur;
/// InitOutputBuffer - Initialize our output buffer.
///
static void InitOutputBuffer() {
#ifndef USE_STDIO
OutBufStart = new char[64*1024];
OutBufEnd = OutBufStart+64*1024;
OutBufCur = OutBufStart;
#endif
}
/// FlushBuffer - Write the accumulated bytes to the output stream.
///
static void FlushBuffer() {
#ifndef USE_STDIO
write(STDOUT_FILENO, OutBufStart, OutBufCur-OutBufStart);
OutBufCur = OutBufStart;
#endif
}
/// CleanupOutputBuffer - Finish up output.
///
static void CleanupOutputBuffer() {
#ifndef USE_STDIO
FlushBuffer();
delete [] OutBufStart;
#endif
}
static void OutputChar(char c) {
#if defined(_MSC_VER)
putchar(c);
#elif defined(USE_STDIO)
putchar_unlocked(c);
#else
if (OutBufCur >= OutBufEnd)
FlushBuffer();
*OutBufCur++ = c;
#endif
}
static void OutputString(const char *Ptr, unsigned Size) {
#ifdef USE_STDIO
fwrite(Ptr, Size, 1, stdout);
#else
if (OutBufCur+Size >= OutBufEnd)
FlushBuffer();
switch (Size) {
default:
memcpy(OutBufCur, Ptr, Size);
break;
case 3:
OutBufCur[2] = Ptr[2];
case 2:
OutBufCur[1] = Ptr[1];
case 1:
OutBufCur[0] = Ptr[0];
case 0:
break;
}
OutBufCur += Size;
#endif
}
//===----------------------------------------------------------------------===//
// Preprocessed token printer
//===----------------------------------------------------------------------===//
static llvm::cl::opt<bool>
DisableLineMarkers("P", llvm::cl::desc("Disable linemarker output in -E mode"));
static llvm::cl::opt<bool>
EnableCommentOutput("C", llvm::cl::desc("Enable comment output in -E mode"));
static llvm::cl::opt<bool>
EnableMacroCommentOutput("CC",
llvm::cl::desc("Enable comment output in -E mode, "
"even from macro expansions"));
namespace {
class PrintPPOutputPPCallbacks : public PPCallbacks {
Preprocessor &PP;
unsigned CurLine;
bool EmittedTokensOnThisLine;
DirectoryLookup::DirType FileType;
llvm::SmallString<512> CurFilename;
public:
PrintPPOutputPPCallbacks(Preprocessor &pp) : PP(pp) {
CurLine = 0;
CurFilename += "<uninit>";
EmittedTokensOnThisLine = false;
FileType = DirectoryLookup::NormalHeaderDir;
}
void SetEmittedTokensOnThisLine() { EmittedTokensOnThisLine = true; }
bool hasEmittedTokensOnThisLine() const { return EmittedTokensOnThisLine; }
virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason,
DirectoryLookup::DirType FileType);
virtual void Ident(SourceLocation Loc, const std::string &str);
void HandleFirstTokOnLine(Token &Tok);
void MoveToLine(SourceLocation Loc);
bool AvoidConcat(const Token &PrevTok, const Token &Tok);
};
}
/// UToStr - Do itoa on the specified number, in-place in the specified buffer.
/// endptr points to the end of the buffer.
static char *UToStr(unsigned N, char *EndPtr) {
// Null terminate the buffer.
*--EndPtr = '\0';
if (N == 0) // Zero is a special case.
*--EndPtr = '0';
while (N) {
*--EndPtr = '0' + char(N % 10);
N /= 10;
}
return EndPtr;
}
/// MoveToLine - Move the output to the source line specified by the location
/// object. We can do this by emitting some number of \n's, or be emitting a
/// #line directive.
void PrintPPOutputPPCallbacks::MoveToLine(SourceLocation Loc) {
if (DisableLineMarkers) {
if (EmittedTokensOnThisLine) {
OutputChar('\n');
EmittedTokensOnThisLine = false;
}
return;
}
unsigned LineNo = PP.getSourceManager().getLogicalLineNumber(Loc);
// If this line is "close enough" to the original line, just print newlines,
// otherwise print a #line directive.
if (LineNo-CurLine < 8) {
if (LineNo-CurLine == 1)
OutputChar('\n');
else {
const char *NewLines = "\n\n\n\n\n\n\n\n";
OutputString(NewLines, LineNo-CurLine);
CurLine = LineNo;
}
} else {
if (EmittedTokensOnThisLine) {
OutputChar('\n');
EmittedTokensOnThisLine = false;
}
CurLine = LineNo;
OutputChar('#');
OutputChar(' ');
char NumberBuffer[20];
const char *NumStr = UToStr(LineNo, NumberBuffer+20);
OutputString(NumStr, (NumberBuffer+20)-NumStr-1);
OutputChar(' ');
OutputChar('"');
OutputString(&CurFilename[0], CurFilename.size());
OutputChar('"');
if (FileType == DirectoryLookup::SystemHeaderDir)
OutputString(" 3", 2);
else if (FileType == DirectoryLookup::ExternCSystemHeaderDir)
OutputString(" 3 4", 4);
OutputChar('\n');
}
}
/// FileChanged - Whenever the preprocessor enters or exits a #include file
/// it invokes this handler. Update our conception of the current source
/// position.
void PrintPPOutputPPCallbacks::FileChanged(SourceLocation Loc,
FileChangeReason Reason,
DirectoryLookup::DirType FileType) {
if (DisableLineMarkers) return;
// Unless we are exiting a #include, make sure to skip ahead to the line the
// #include directive was at.
SourceManager &SourceMgr = PP.getSourceManager();
if (Reason == PPCallbacks::EnterFile) {
MoveToLine(SourceMgr.getIncludeLoc(Loc));
} else if (Reason == PPCallbacks::SystemHeaderPragma) {
MoveToLine(Loc);
// TODO GCC emits the # directive for this directive on the line AFTER the
// directive and emits a bunch of spaces that aren't needed. Emulate this
// strange behavior.
}
Loc = SourceMgr.getLogicalLoc(Loc);
CurLine = SourceMgr.getLineNumber(Loc);
CurFilename.clear();
CurFilename += SourceMgr.getSourceName(Loc);
Lexer::Stringify(CurFilename);
FileType = FileType;
if (EmittedTokensOnThisLine) {
OutputChar('\n');
EmittedTokensOnThisLine = false;
}
OutputChar('#');
OutputChar(' ');
char NumberBuffer[20];
const char *NumStr = UToStr(CurLine, NumberBuffer+20);
OutputString(NumStr, (NumberBuffer+20)-NumStr-1);
OutputChar(' ');
OutputChar('"');
OutputString(&CurFilename[0], CurFilename.size());
OutputChar('"');
switch (Reason) {
case PPCallbacks::EnterFile:
OutputString(" 1", 2);
break;
case PPCallbacks::ExitFile:
OutputString(" 2", 2);
break;
case PPCallbacks::SystemHeaderPragma: break;
case PPCallbacks::RenameFile: break;
}
if (FileType == DirectoryLookup::SystemHeaderDir)
OutputString(" 3", 2);
else if (FileType == DirectoryLookup::ExternCSystemHeaderDir)
OutputString(" 3 4", 4);
OutputChar('\n');
}
/// HandleIdent - Handle #ident directives when read by the preprocessor.
///
void PrintPPOutputPPCallbacks::Ident(SourceLocation Loc, const std::string &S) {
MoveToLine(Loc);
OutputString("#ident ", strlen("#ident "));
OutputString(&S[0], S.size());
EmittedTokensOnThisLine = true;
}
/// HandleFirstTokOnLine - When emitting a preprocessed file in -E mode, this
/// is called for the first token on each new line.
void PrintPPOutputPPCallbacks::HandleFirstTokOnLine(Token &Tok) {
// Figure out what line we went to and insert the appropriate number of
// newline characters.
MoveToLine(Tok.getLocation());
// Print out space characters so that the first token on a line is
// indented for easy reading.
const SourceManager &SourceMgr = PP.getSourceManager();
unsigned ColNo = SourceMgr.getLogicalColumnNumber(Tok.getLocation());
// This hack prevents stuff like:
// #define HASH #
// HASH define foo bar
// From having the # character end up at column 1, which makes it so it
// is not handled as a #define next time through the preprocessor if in
// -fpreprocessed mode.
if (ColNo <= 1 && Tok.getKind() == tok::hash)
OutputChar(' ');
// Otherwise, indent the appropriate number of spaces.
for (; ColNo > 1; --ColNo)
OutputChar(' ');
}
namespace {
struct UnknownPragmaHandler : public PragmaHandler {
const char *Prefix;
PrintPPOutputPPCallbacks *Callbacks;
UnknownPragmaHandler(const char *prefix, PrintPPOutputPPCallbacks *callbacks)
: PragmaHandler(0), Prefix(prefix), Callbacks(callbacks) {}
virtual void HandlePragma(Preprocessor &PP, Token &PragmaTok) {
// Figure out what line we went to and insert the appropriate number of
// newline characters.
Callbacks->MoveToLine(PragmaTok.getLocation());
OutputString(Prefix, strlen(Prefix));
// Read and print all of the pragma tokens.
while (PragmaTok.getKind() != tok::eom) {
if (PragmaTok.hasLeadingSpace())
OutputChar(' ');
std::string TokSpell = PP.getSpelling(PragmaTok);
OutputString(&TokSpell[0], TokSpell.size());
PP.LexUnexpandedToken(PragmaTok);
}
OutputChar('\n');
}
};
} // end anonymous namespace
enum AvoidConcatInfo {
/// By default, a token never needs to avoid concatenation. Most tokens (e.g.
/// ',', ')', etc) don't cause a problem when concatenated.
aci_never_avoid_concat = 0,
/// aci_custom_firstchar - AvoidConcat contains custom code to handle this
/// token's requirements, and it needs to know the first character of the
/// token.
aci_custom_firstchar = 1,
/// aci_custom - AvoidConcat contains custom code to handle this token's
/// requirements, but it doesn't need to know the first character of the
/// token.
aci_custom = 2,
/// aci_avoid_equal - Many tokens cannot be safely followed by an '='
/// character. For example, "<<" turns into "<<=" when followed by an =.
aci_avoid_equal = 4
};
/// This array contains information for each token on what action to take when
/// avoiding concatenation of tokens in the AvoidConcat method.
static char TokenInfo[tok::NUM_TOKENS];
/// InitAvoidConcatTokenInfo - Tokens that must avoid concatenation should be
/// marked by this function.
static void InitAvoidConcatTokenInfo() {
// These tokens have custom code in AvoidConcat.
TokenInfo[tok::identifier ] |= aci_custom;
TokenInfo[tok::numeric_constant] |= aci_custom_firstchar;
TokenInfo[tok::period ] |= aci_custom_firstchar;
TokenInfo[tok::amp ] |= aci_custom_firstchar;
TokenInfo[tok::plus ] |= aci_custom_firstchar;
TokenInfo[tok::minus ] |= aci_custom_firstchar;
TokenInfo[tok::slash ] |= aci_custom_firstchar;
TokenInfo[tok::less ] |= aci_custom_firstchar;
TokenInfo[tok::greater ] |= aci_custom_firstchar;
TokenInfo[tok::pipe ] |= aci_custom_firstchar;
TokenInfo[tok::percent ] |= aci_custom_firstchar;
TokenInfo[tok::colon ] |= aci_custom_firstchar;
TokenInfo[tok::hash ] |= aci_custom_firstchar;
TokenInfo[tok::arrow ] |= aci_custom_firstchar;
// These tokens change behavior if followed by an '='.
TokenInfo[tok::amp ] |= aci_avoid_equal; // &=
TokenInfo[tok::plus ] |= aci_avoid_equal; // +=
TokenInfo[tok::minus ] |= aci_avoid_equal; // -=
TokenInfo[tok::slash ] |= aci_avoid_equal; // /=
TokenInfo[tok::less ] |= aci_avoid_equal; // <=
TokenInfo[tok::greater ] |= aci_avoid_equal; // >=
TokenInfo[tok::pipe ] |= aci_avoid_equal; // |=
TokenInfo[tok::percent ] |= aci_avoid_equal; // %=
TokenInfo[tok::star ] |= aci_avoid_equal; // *=
TokenInfo[tok::exclaim ] |= aci_avoid_equal; // !=
TokenInfo[tok::lessless ] |= aci_avoid_equal; // <<=
TokenInfo[tok::greaterequal] |= aci_avoid_equal; // >>=
TokenInfo[tok::caret ] |= aci_avoid_equal; // ^=
TokenInfo[tok::equal ] |= aci_avoid_equal; // ==
}
/// AvoidConcat - If printing PrevTok immediately followed by Tok would cause
/// the two individual tokens to be lexed as a single token, return true (which
/// causes a space to be printed between them). This allows the output of -E
/// mode to be lexed to the same token stream as lexing the input directly
/// would.
///
/// This code must conservatively return true if it doesn't want to be 100%
/// accurate. This will cause the output to include extra space characters, but
/// the resulting output won't have incorrect concatenations going on. Examples
/// include "..", which we print with a space between, because we don't want to
/// track enough to tell "x.." from "...".
bool PrintPPOutputPPCallbacks::AvoidConcat(const Token &PrevTok,
const Token &Tok) {
char Buffer[256];
tok::TokenKind PrevKind = PrevTok.getKind();
if (PrevTok.getIdentifierInfo()) // Language keyword or named operator.
PrevKind = tok::identifier;
// Look up information on when we should avoid concatenation with prevtok.
unsigned ConcatInfo = TokenInfo[PrevKind];
// If prevtok never causes a problem for anything after it, return quickly.
if (ConcatInfo == 0) return false;
if (ConcatInfo & aci_avoid_equal) {
// If the next token is '=' or '==', avoid concatenation.
if (Tok.getKind() == tok::equal ||
Tok.getKind() == tok::equalequal)
return true;
ConcatInfo &= ~aci_avoid_equal;
}
if (ConcatInfo == 0) return false;
// Basic algorithm: we look at the first character of the second token, and
// determine whether it, if appended to the first token, would form (or would
// contribute) to a larger token if concatenated.
char FirstChar = 0;
if (ConcatInfo & aci_custom) {
// If the token does not need to know the first character, don't get it.
} else if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
// Avoid spelling identifiers, the most common form of token.
FirstChar = II->getName()[0];
} else if (!Tok.needsCleaning()) {
SourceManager &SrcMgr = PP.getSourceManager();
FirstChar =
*SrcMgr.getCharacterData(SrcMgr.getPhysicalLoc(Tok.getLocation()));
} else if (Tok.getLength() < 256) {
const char *TokPtr = Buffer;
PP.getSpelling(Tok, TokPtr);
FirstChar = TokPtr[0];
} else {
FirstChar = PP.getSpelling(Tok)[0];
}
switch (PrevKind) {
default: assert(0 && "InitAvoidConcatTokenInfo built wrong");
case tok::identifier: // id+id or id+number or id+L"foo".
if (Tok.getKind() == tok::numeric_constant || Tok.getIdentifierInfo() ||
Tok.getKind() == tok::wide_string_literal /* ||
Tok.getKind() == tok::wide_char_literal*/)
return true;
if (Tok.getKind() != tok::char_constant)
return false;
// FIXME: need a wide_char_constant!
if (!Tok.needsCleaning()) {
SourceManager &SrcMgr = PP.getSourceManager();
return *SrcMgr.getCharacterData(SrcMgr.getPhysicalLoc(Tok.getLocation()))
== 'L';
} else if (Tok.getLength() < 256) {
const char *TokPtr = Buffer;
PP.getSpelling(Tok, TokPtr);
return TokPtr[0] == 'L';
} else {
return PP.getSpelling(Tok)[0] == 'L';
}
case tok::numeric_constant:
return isalnum(FirstChar) || Tok.getKind() == tok::numeric_constant ||
FirstChar == '+' || FirstChar == '-' || FirstChar == '.';
case tok::period: // ..., .*, .1234
return FirstChar == '.' || FirstChar == '*' || isdigit(FirstChar);
case tok::amp: // &&
return FirstChar == '&';
case tok::plus: // ++
return FirstChar == '+';
case tok::minus: // --, ->, ->*
return FirstChar == '-' || FirstChar == '>';
case tok::slash: //, /*, //
return FirstChar == '*' || FirstChar == '/';
case tok::less: // <<, <<=, <:, <%
return FirstChar == '<' || FirstChar == ':' || FirstChar == '%';
case tok::greater: // >>, >>=
return FirstChar == '>';
case tok::pipe: // ||
return FirstChar == '|';
case tok::percent: // %>, %:
return FirstChar == '>' || FirstChar == ':';
case tok::colon: // ::, :>
return FirstChar == ':' || FirstChar == '>';
case tok::hash: // ##, #@, %:%:
return FirstChar == '#' || FirstChar == '@' || FirstChar == '%';
case tok::arrow: // ->*
return FirstChar == '*';
}
}
/// DoPrintPreprocessedInput - This implements -E mode.
///
void clang::DoPrintPreprocessedInput(unsigned MainFileID, Preprocessor &PP,
const LangOptions &Options) {
// Inform the preprocessor whether we want it to retain comments or not, due
// to -C or -CC.
PP.SetCommentRetentionState(EnableCommentOutput, EnableMacroCommentOutput);
InitOutputBuffer();
InitAvoidConcatTokenInfo();
Token Tok, PrevTok;
char Buffer[256];
PrintPPOutputPPCallbacks *Callbacks = new PrintPPOutputPPCallbacks(PP);
PP.setPPCallbacks(Callbacks);
PP.AddPragmaHandler(0, new UnknownPragmaHandler("#pragma", Callbacks));
PP.AddPragmaHandler("GCC", new UnknownPragmaHandler("#pragma GCC",Callbacks));
// After we have configured the preprocessor, enter the main file.
// Start parsing the specified input file.
PP.EnterSourceFile(MainFileID, 0, true);
do {
PrevTok = Tok;
PP.Lex(Tok);
// If this token is at the start of a line, emit newlines if needed.
if (Tok.isAtStartOfLine()) {
Callbacks->HandleFirstTokOnLine(Tok);
} else if (Tok.hasLeadingSpace() ||
// If we haven't emitted a token on this line yet, PrevTok isn't
// useful to look at and no concatenation could happen anyway.
(Callbacks->hasEmittedTokensOnThisLine() &&
// Don't print "-" next to "-", it would form "--".
Callbacks->AvoidConcat(PrevTok, Tok))) {
OutputChar(' ');
}
if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
const char *Str = II->getName();
unsigned Len = Tok.needsCleaning() ? strlen(Str) : Tok.getLength();
OutputString(Str, Len);
} else if (Tok.getLength() < 256) {
const char *TokPtr = Buffer;
unsigned Len = PP.getSpelling(Tok, TokPtr);
OutputString(TokPtr, Len);
} else {
std::string S = PP.getSpelling(Tok);
OutputString(&S[0], S.size());
}
Callbacks->SetEmittedTokensOnThisLine();
} while (Tok.getKind() != tok::eof);
OutputChar('\n');
CleanupOutputBuffer();
}

View File

@@ -1,444 +0,0 @@
//===--- Targets.cpp - Implement -arch option and targets -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the -arch command line option and creates a TargetInfo
// that represents them.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "clang/AST/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/CommandLine.h"
using namespace clang;
/// Note: a hard coded list of targets is clearly silly, these should be
/// dynamicly registered and loadable with "-load".
enum SupportedTargets {
target_ppc, target_ppc64,
target_i386, target_x86_64,
target_linux_i386
};
static llvm::cl::list<SupportedTargets>
Archs("arch", llvm::cl::desc("Architectures to compile for"),
llvm::cl::values(clEnumValN(target_ppc, "ppc", "32-bit Darwin PowerPC"),
clEnumValN(target_ppc64, "ppc64", "64-bit Darwin PowerPC"),
clEnumValN(target_i386, "i386", "32-bit Darwin X86"),
clEnumValN(target_x86_64, "x86_64","64-bit Darwin X86"),
clEnumValN(target_linux_i386,"linux", "Linux i386"),
clEnumValEnd));
//===----------------------------------------------------------------------===//
// Common code shared among targets.
//===----------------------------------------------------------------------===//
namespace {
class DarwinTargetInfo : public TargetInfoImpl {
public:
virtual void getTargetDefines(std::vector<std::string> &Defines) const {
Defines.push_back("__APPLE__=1");
Defines.push_back("__MACH__=1");
if (1) {// -fobjc-gc controls this.
Defines.push_back("__weak=");
Defines.push_back("__strong=");
} else {
Defines.push_back("__weak=__attribute__((objc_gc(weak)))");
Defines.push_back("__strong=__attribute__((objc_gc(strong)))");
Defines.push_back("__OBJC_GC__");
}
// darwin_constant_cfstrings controls this.
Defines.push_back("__CONSTANT_CFSTRINGS__=1");
if (0) // darwin_pascal_strings
Defines.push_back("__PASCAL_STRINGS__");
}
};
} // end anonymous namespace.
/// getPowerPCDefines - Return a set of the PowerPC-specific #defines that are
/// not tied to a specific subtarget.
static void getPowerPCDefines(std::vector<std::string> &Defines, bool is64Bit) {
// Target identification.
Defines.push_back("__ppc__");
Defines.push_back("_ARCH_PPC=1");
Defines.push_back("__POWERPC__=1");
if (is64Bit) {
Defines.push_back("_ARCH_PPC64");
Defines.push_back("_LP64");
Defines.push_back("__LP64__");
Defines.push_back("__ppc64__");
} else {
Defines.push_back("__ppc__=1");
}
// Target properties.
Defines.push_back("_BIG_ENDIAN=1");
Defines.push_back("__BIG_ENDIAN__=1");
if (is64Bit) {
Defines.push_back("__INTMAX_MAX__=9223372036854775807L");
Defines.push_back("__INTMAX_TYPE__=long int");
Defines.push_back("__LONG_MAX__=9223372036854775807L");
Defines.push_back("__PTRDIFF_TYPE__=long int");
Defines.push_back("__UINTMAX_TYPE__=long unsigned int");
} else {
Defines.push_back("__INTMAX_MAX__=9223372036854775807LL");
Defines.push_back("__INTMAX_TYPE__=long long int");
Defines.push_back("__LONG_MAX__=2147483647L");
Defines.push_back("__PTRDIFF_TYPE__=int");
Defines.push_back("__UINTMAX_TYPE__=long long unsigned int");
}
Defines.push_back("__INT_MAX__=2147483647");
Defines.push_back("__LONG_LONG_MAX__=9223372036854775807LL");
Defines.push_back("__CHAR_BIT__=8");
Defines.push_back("__SCHAR_MAX__=127");
Defines.push_back("__SHRT_MAX__=32767");
Defines.push_back("__SIZE_TYPE__=long unsigned int");
// Subtarget options.
Defines.push_back("__USER_LABEL_PREFIX__=_");
Defines.push_back("__NATURAL_ALIGNMENT__=1");
Defines.push_back("__REGISTER_PREFIX__=");
Defines.push_back("__WCHAR_MAX__=2147483647");
Defines.push_back("__WCHAR_TYPE__=int");
Defines.push_back("__WINT_TYPE__=int");
// Float macros.
Defines.push_back("__FLT_DENORM_MIN__=1.40129846e-45F");
Defines.push_back("__FLT_DIG__=6");
Defines.push_back("__FLT_EPSILON__=1.19209290e-7F");
Defines.push_back("__FLT_EVAL_METHOD__=0");
Defines.push_back("__FLT_HAS_INFINITY__=1");
Defines.push_back("__FLT_HAS_QUIET_NAN__=1");
Defines.push_back("__FLT_MANT_DIG__=24");
Defines.push_back("__FLT_MAX_10_EXP__=38");
Defines.push_back("__FLT_MAX_EXP__=128");
Defines.push_back("__FLT_MAX__=3.40282347e+38F");
Defines.push_back("__FLT_MIN_10_EXP__=(-37)");
Defines.push_back("__FLT_MIN_EXP__=(-125)");
Defines.push_back("__FLT_MIN__=1.17549435e-38F");
Defines.push_back("__FLT_RADIX__=2");
// double macros.
Defines.push_back("__DBL_DENORM_MIN__=4.9406564584124654e-324");
Defines.push_back("__DBL_DIG__=15");
Defines.push_back("__DBL_EPSILON__=2.2204460492503131e-16");
Defines.push_back("__DBL_HAS_INFINITY__=1");
Defines.push_back("__DBL_HAS_QUIET_NAN__=1");
Defines.push_back("__DBL_MANT_DIG__=53");
Defines.push_back("__DBL_MAX_10_EXP__=308");
Defines.push_back("__DBL_MAX_EXP__=1024");
Defines.push_back("__DBL_MAX__=1.7976931348623157e+308");
Defines.push_back("__DBL_MIN_10_EXP__=(-307)");
Defines.push_back("__DBL_MIN_EXP__=(-1021)");
Defines.push_back("__DBL_MIN__=2.2250738585072014e-308");
Defines.push_back("__DECIMAL_DIG__=33");
// 128-bit long double macros.
Defines.push_back("__LDBL_DENORM_MIN__=4.940656458412465441765687"
"92868221e-324L");
Defines.push_back("__LDBL_DIG__=31");
Defines.push_back("__LDBL_EPSILON__=4.9406564584124654417656879286822"
"1e-324L");
Defines.push_back("__LDBL_HAS_INFINITY__=1");
Defines.push_back("__LDBL_HAS_QUIET_NAN__=1");
Defines.push_back("__LDBL_MANT_DIG__=106");
Defines.push_back("__LDBL_MAX_10_EXP__=308");
Defines.push_back("__LDBL_MAX_EXP__=1024");
Defines.push_back("__LDBL_MAX__=1.7976931348623158079372897140"
"5301e+308L");
Defines.push_back("__LDBL_MIN_10_EXP__=(-291)");
Defines.push_back("__LDBL_MIN_EXP__=(-968)");
Defines.push_back("__LDBL_MIN__=2.004168360008972777996108051350"
"16e-292L");
Defines.push_back("__LONG_DOUBLE_128__=1");
}
/// getX86Defines - Return a set of the X86-specific #defines that are
/// not tied to a specific subtarget.
static void getX86Defines(std::vector<std::string> &Defines, bool is64Bit) {
// Target identification.
if (is64Bit) {
Defines.push_back("_LP64");
Defines.push_back("__LP64__");
Defines.push_back("__amd64__");
Defines.push_back("__amd64");
Defines.push_back("__x86_64");
Defines.push_back("__x86_64__");
} else {
Defines.push_back("__i386__=1");
Defines.push_back("__i386=1");
Defines.push_back("i386=1");
}
// Target properties.
Defines.push_back("__LITTLE_ENDIAN__=1");
if (is64Bit) {
Defines.push_back("__INTMAX_MAX__=9223372036854775807L");
Defines.push_back("__INTMAX_TYPE__=long int");
Defines.push_back("__LONG_MAX__=9223372036854775807L");
Defines.push_back("__PTRDIFF_TYPE__=long int");
Defines.push_back("__UINTMAX_TYPE__=long unsigned int");
} else {
Defines.push_back("__INTMAX_MAX__=9223372036854775807LL");
Defines.push_back("__INTMAX_TYPE__=long long int");
Defines.push_back("__LONG_MAX__=2147483647L");
Defines.push_back("__PTRDIFF_TYPE__=int");
Defines.push_back("__UINTMAX_TYPE__=long long unsigned int");
}
Defines.push_back("__CHAR_BIT__=8");
Defines.push_back("__INT_MAX__=2147483647");
Defines.push_back("__LONG_LONG_MAX__=9223372036854775807LL");
Defines.push_back("__SCHAR_MAX__=127");
Defines.push_back("__SHRT_MAX__=32767");
Defines.push_back("__SIZE_TYPE__=long unsigned int");
// Subtarget options.
Defines.push_back("__nocona=1");
Defines.push_back("__nocona__=1");
Defines.push_back("__tune_nocona__=1");
Defines.push_back("__SSE2_MATH__=1");
Defines.push_back("__SSE2__=1");
Defines.push_back("__SSE_MATH__=1");
Defines.push_back("__SSE__=1");
Defines.push_back("__MMX__=1");
Defines.push_back("__REGISTER_PREFIX__=");
Defines.push_back("__WCHAR_MAX__=2147483647");
Defines.push_back("__WCHAR_TYPE__=int");
Defines.push_back("__WINT_TYPE__=int");
// Float macros.
Defines.push_back("__FLT_DENORM_MIN__=1.40129846e-45F");
Defines.push_back("__FLT_DIG__=6");
Defines.push_back("__FLT_EPSILON__=1.19209290e-7F");
Defines.push_back("__FLT_EVAL_METHOD__=0");
Defines.push_back("__FLT_HAS_INFINITY__=1");
Defines.push_back("__FLT_HAS_QUIET_NAN__=1");
Defines.push_back("__FLT_MANT_DIG__=24");
Defines.push_back("__FLT_MAX_10_EXP__=38");
Defines.push_back("__FLT_MAX_EXP__=128");
Defines.push_back("__FLT_MAX__=3.40282347e+38F");
Defines.push_back("__FLT_MIN_10_EXP__=(-37)");
Defines.push_back("__FLT_MIN_EXP__=(-125)");
Defines.push_back("__FLT_MIN__=1.17549435e-38F");
Defines.push_back("__FLT_RADIX__=2");
// Double macros.
Defines.push_back("__DBL_DENORM_MIN__=4.9406564584124654e-324");
Defines.push_back("__DBL_DIG__=15");
Defines.push_back("__DBL_EPSILON__=2.2204460492503131e-16");
Defines.push_back("__DBL_HAS_INFINITY__=1");
Defines.push_back("__DBL_HAS_QUIET_NAN__=1");
Defines.push_back("__DBL_MANT_DIG__=53");
Defines.push_back("__DBL_MAX_10_EXP__=308");
Defines.push_back("__DBL_MAX_EXP__=1024");
Defines.push_back("__DBL_MAX__=1.7976931348623157e+308");
Defines.push_back("__DBL_MIN_10_EXP__=(-307)");
Defines.push_back("__DBL_MIN_EXP__=(-1021)");
Defines.push_back("__DBL_MIN__=2.2250738585072014e-308");
Defines.push_back("__DECIMAL_DIG__=21");
// 80-bit Long double macros.
Defines.push_back("__LDBL_DENORM_MIN__=3.64519953188247460253e-4951L");
Defines.push_back("__LDBL_DIG__=18");
Defines.push_back("__LDBL_EPSILON__=1.08420217248550443401e-19L");
Defines.push_back("__LDBL_HAS_INFINITY__=1");
Defines.push_back("__LDBL_HAS_QUIET_NAN__=1");
Defines.push_back("__LDBL_MANT_DIG__=64");
Defines.push_back("__LDBL_MAX_10_EXP__=4932");
Defines.push_back("__LDBL_MAX_EXP__=16384");
Defines.push_back("__LDBL_MAX__=1.18973149535723176502e+4932L");
Defines.push_back("__LDBL_MIN_10_EXP__=(-4931)");
Defines.push_back("__LDBL_MIN_EXP__=(-16381)");
Defines.push_back("__LDBL_MIN__=3.36210314311209350626e-4932L");
}
/// PPC builtin info.
namespace PPC {
enum {
LastTIBuiltin = Builtin::FirstTSBuiltin-1,
#define BUILTIN(ID, TYPE, ATTRS) BI##ID,
#include "PPCBuiltins.def"
LastTSBuiltin
};
static const Builtin::Info BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS },
#include "PPCBuiltins.def"
};
static void getBuiltins(const Builtin::Info *&Records, unsigned &NumRecords) {
Records = BuiltinInfo;
NumRecords = LastTSBuiltin-Builtin::FirstTSBuiltin;
}
} // End namespace PPC
/// X86 builtin info.
namespace X86 {
enum {
LastTIBuiltin = Builtin::FirstTSBuiltin-1,
#define BUILTIN(ID, TYPE, ATTRS) BI##ID,
#include "X86Builtins.def"
LastTSBuiltin
};
static const Builtin::Info BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS },
#include "X86Builtins.def"
};
static void getBuiltins(const Builtin::Info *&Records, unsigned &NumRecords) {
Records = BuiltinInfo;
NumRecords = LastTSBuiltin-Builtin::FirstTSBuiltin;
}
} // End namespace X86
//===----------------------------------------------------------------------===//
// Specific target implementations.
//===----------------------------------------------------------------------===//
namespace {
class DarwinPPCTargetInfo : public DarwinTargetInfo {
public:
virtual void getTargetDefines(std::vector<std::string> &Defines) const {
DarwinTargetInfo::getTargetDefines(Defines);
getPowerPCDefines(Defines, false);
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
PPC::getBuiltins(Records, NumRecords);
}
};
} // end anonymous namespace.
namespace {
class DarwinPPC64TargetInfo : public DarwinTargetInfo {
public:
virtual void getTargetDefines(std::vector<std::string> &Defines) const {
DarwinTargetInfo::getTargetDefines(Defines);
getPowerPCDefines(Defines, true);
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
PPC::getBuiltins(Records, NumRecords);
}
};
} // end anonymous namespace.
namespace {
class DarwinI386TargetInfo : public DarwinTargetInfo {
public:
virtual void getTargetDefines(std::vector<std::string> &Defines) const {
DarwinTargetInfo::getTargetDefines(Defines);
getX86Defines(Defines, false);
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
X86::getBuiltins(Records, NumRecords);
}
};
} // end anonymous namespace.
namespace {
class DarwinX86_64TargetInfo : public DarwinTargetInfo {
public:
virtual void getTargetDefines(std::vector<std::string> &Defines) const {
DarwinTargetInfo::getTargetDefines(Defines);
getX86Defines(Defines, true);
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
X86::getBuiltins(Records, NumRecords);
}
};
} // end anonymous namespace.
namespace {
class LinuxTargetInfo : public DarwinTargetInfo {
public:
LinuxTargetInfo() {
// Note: I have no idea if this is right, just for testing.
WCharWidth = 16;
WCharAlign = 16;
}
virtual void getTargetDefines(std::vector<std::string> &Defines) const {
// TODO: linux-specific stuff.
getX86Defines(Defines, false);
}
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const {
X86::getBuiltins(Records, NumRecords);
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Driver code
//===----------------------------------------------------------------------===//
/// CreateTarget - Create the TargetInfoImpl object for the specified target
/// enum value.
static TargetInfoImpl *CreateTarget(SupportedTargets T) {
switch (T) {
default: assert(0 && "Unknown target!");
case target_ppc: return new DarwinPPCTargetInfo();
case target_ppc64: return new DarwinPPC64TargetInfo();
case target_i386: return new DarwinI386TargetInfo();
case target_x86_64: return new DarwinX86_64TargetInfo();
case target_linux_i386: return new LinuxTargetInfo();
}
}
/// CreateTargetInfo - Return the set of target info objects as specified by
/// the -arch command line option.
TargetInfo *clang::CreateTargetInfo(Diagnostic &Diags) {
// If the user didn't specify at least one architecture, auto-sense the
// current host. TODO: This is a hack. :)
if (Archs.empty()) {
#ifndef __APPLE__
// Assume non-apple = i386 for now.
Archs.push_back(target_i386);
#elif (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
defined(__ppc64__)
Archs.push_back(target_ppc64);
#elif defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)
Archs.push_back(target_ppc);
#elif defined(__x86_64__)
Archs.push_back(target_x86_64);
#elif defined(__i386__) || defined(i386) || defined(_M_IX86)
Archs.push_back(target_i386);
#else
// Don't know what this is!
return 0;
#endif
}
// Create the primary target and target info.
TargetInfo *TI = new TargetInfo(CreateTarget(Archs[0]), &Diags);
// Add all secondary targets.
for (unsigned i = 1, e = Archs.size(); i != e; ++i)
TI->AddSecondaryTarget(CreateTarget(Archs[i]));
return TI;
}

View File

@@ -1,38 +0,0 @@
//===--- TextDiagnosticBuffer.cpp - Buffer Text Diagnostics ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a concrete diagnostic client, which buffers the diagnostic messages.
//
//===----------------------------------------------------------------------===//
#include "TextDiagnosticBuffer.h"
#include "clang/Basic/SourceManager.h"
using namespace clang;
/// HandleDiagnostic - Store the errors & warnings that are reported.
///
void TextDiagnosticBuffer::HandleDiagnostic(Diagnostic::Level Level,
SourceLocation Pos,
diag::kind ID,
const std::string *Strs,
unsigned NumStrs,
const SourceRange *,
unsigned) {
switch (Level) {
default: assert(0 && "Diagnostic not handled during diagnostic buffering!");
case Diagnostic::Warning:
Warnings.push_back(std::make_pair(Pos, FormatDiagnostic(Level, ID, Strs,
NumStrs)));
break;
case Diagnostic::Error:
Errors.push_back(std::make_pair(Pos, FormatDiagnostic(Level, ID, Strs,
NumStrs)));
break;
}
}

View File

@@ -1,51 +0,0 @@
//===--- TextDiagnosticBuffer.h - Buffer Text Diagnostics -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a concrete diagnostic client, which buffers the diagnostic messages.
//
//===----------------------------------------------------------------------===//
#ifndef DRIVER_TEXT_DIAGNOSTIC_BUFFER_H_
#define DRIVER_TEXT_DIAGNOSTIC_BUFFER_H_
#include "TextDiagnostics.h"
#include <vector>
namespace clang {
class Preprocessor;
class SourceManager;
class TextDiagnosticBuffer : public TextDiagnostics {
public:
typedef std::vector<std::pair<SourceLocation, std::string> > DiagList;
typedef DiagList::iterator iterator;
typedef DiagList::const_iterator const_iterator;
private:
DiagList Errors, Warnings;
public:
TextDiagnosticBuffer(SourceManager &SM) : TextDiagnostics(SM) {}
const_iterator err_begin() const { return Errors.begin(); }
const_iterator err_end() const { return Errors.end(); }
const_iterator warn_begin() const { return Warnings.begin(); }
const_iterator warn_end() const { return Warnings.end(); }
virtual void HandleDiagnostic(Diagnostic::Level DiagLevel,
SourceLocation Pos,
diag::kind ID, const std::string *Strs,
unsigned NumStrs,
const SourceRange *Ranges,
unsigned NumRanges);
};
} // end namspace clang
#endif

View File

@@ -1,218 +0,0 @@
//===--- TextDiagnosticPrinter.cpp - Diagnostic Printer -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This diagnostic client prints out their diagnostic messages.
//
//===----------------------------------------------------------------------===//
#include "TextDiagnosticPrinter.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Lexer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include <iostream>
#include <string>
using namespace clang;
static llvm::cl::opt<bool>
NoShowColumn("fno-show-column",
llvm::cl::desc("Do not include column number on diagnostics"));
static llvm::cl::opt<bool>
NoCaretDiagnostics("fno-caret-diagnostics",
llvm::cl::desc("Do not include source line and caret with"
" diagnostics"));
void TextDiagnosticPrinter::
PrintIncludeStack(SourceLocation Pos) {
if (Pos.isInvalid()) return;
Pos = SourceMgr.getLogicalLoc(Pos);
// Print out the other include frames first.
PrintIncludeStack(SourceMgr.getIncludeLoc(Pos));
unsigned LineNo = SourceMgr.getLineNumber(Pos);
std::cerr << "In file included from " << SourceMgr.getSourceName(Pos)
<< ":" << LineNo << ":\n";
}
/// HighlightRange - Given a SourceRange and a line number, highlight (with ~'s)
/// any characters in LineNo that intersect the SourceRange.
void TextDiagnosticPrinter::HighlightRange(const SourceRange &R,
unsigned LineNo,
std::string &CaratLine,
const std::string &SourceLine) {
assert(CaratLine.size() == SourceLine.size() &&
"Expect a correspondence between source and carat line!");
if (!R.isValid()) return;
unsigned StartLineNo = SourceMgr.getLogicalLineNumber(R.Begin());
if (StartLineNo > LineNo) return; // No intersection.
unsigned EndLineNo = SourceMgr.getLogicalLineNumber(R.End());
if (EndLineNo < LineNo) return; // No intersection.
// Compute the column number of the start.
unsigned StartColNo = 0;
if (StartLineNo == LineNo) {
StartColNo = SourceMgr.getLogicalColumnNumber(R.Begin());
if (StartColNo) --StartColNo; // Zero base the col #.
}
// Pick the first non-whitespace column.
while (StartColNo < SourceLine.size() &&
(SourceLine[StartColNo] == ' ' || SourceLine[StartColNo] == '\t'))
++StartColNo;
// Compute the column number of the end.
unsigned EndColNo = CaratLine.size();
if (EndLineNo == LineNo) {
EndColNo = SourceMgr.getLogicalColumnNumber(R.End());
if (EndColNo) {
--EndColNo; // Zero base the col #.
// Add in the length of the token, so that we cover multi-char tokens.
EndColNo += GetTokenLength(R.End());
} else {
EndColNo = CaratLine.size();
}
}
// Pick the last non-whitespace column.
while (EndColNo-1 &&
(SourceLine[EndColNo-1] == ' ' || SourceLine[EndColNo-1] == '\t'))
--EndColNo;
// Fill the range with ~'s.
assert(StartColNo <= EndColNo && "Invalid range!");
for (unsigned i = StartColNo; i != EndColNo; ++i)
CaratLine[i] = '~';
}
/// GetTokenLength - Given the source location of a token, determine its length.
/// This is a fully general function that uses a lexer to relex the token.
unsigned TextDiagnosticPrinter::GetTokenLength(SourceLocation Loc) {
// If this comes from a macro expansion, we really do want the macro name, not
// the token this macro expanded to.
Loc = SourceMgr.getLogicalLoc(Loc);
const char *StrData = SourceMgr.getCharacterData(Loc);
// TODO: this could be special cased for common tokens like identifiers, ')',
// etc to make this faster, if it mattered. This could use
// Lexer::isObviouslySimpleCharacter for example.
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(Loc, *ThePreprocessor, StrData);
Token TheTok;
TheLexer.LexRawToken(TheTok);
return TheTok.getLength();
}
void TextDiagnosticPrinter::HandleDiagnostic(Diagnostic::Level Level,
SourceLocation Pos,
diag::kind ID,
const std::string *Strs,
unsigned NumStrs,
const SourceRange *Ranges,
unsigned NumRanges) {
unsigned LineNo = 0, ColNo = 0;
const char *LineStart = 0, *LineEnd = 0;
if (Pos.isValid()) {
SourceLocation LPos = SourceMgr.getLogicalLoc(Pos);
LineNo = SourceMgr.getLineNumber(LPos);
// First, if this diagnostic is not in the main file, print out the
// "included from" lines.
if (LastWarningLoc != SourceMgr.getIncludeLoc(LPos)) {
LastWarningLoc = SourceMgr.getIncludeLoc(LPos);
PrintIncludeStack(LastWarningLoc);
}
// Compute the column number. Rewind from the current position to the start
// of the line.
ColNo = SourceMgr.getColumnNumber(LPos);
const char *TokLogicalPtr = SourceMgr.getCharacterData(LPos);
LineStart = TokLogicalPtr-ColNo+1; // Column # is 1-based
// Compute the line end. Scan forward from the error position to the end of
// the line.
const llvm::MemoryBuffer *Buffer = SourceMgr.getBuffer(LPos.getFileID());
const char *BufEnd = Buffer->getBufferEnd();
LineEnd = TokLogicalPtr;
while (LineEnd != BufEnd &&
*LineEnd != '\n' && *LineEnd != '\r')
++LineEnd;
std::cerr << Buffer->getBufferIdentifier()
<< ":" << LineNo << ":";
if (ColNo && !NoShowColumn)
std::cerr << ColNo << ":";
std::cerr << " ";
}
switch (Level) {
default: assert(0 && "Unknown diagnostic type!");
case Diagnostic::Note: std::cerr << "note: "; break;
case Diagnostic::Warning: std::cerr << "warning: "; break;
case Diagnostic::Error: std::cerr << "error: "; break;
case Diagnostic::Fatal: std::cerr << "fatal error: "; break;
break;
}
std::cerr << FormatDiagnostic(Level, ID, Strs, NumStrs) << "\n";
if (!NoCaretDiagnostics && Pos.isValid()) {
// Get the line of the source file.
std::string SourceLine(LineStart, LineEnd);
// Create a line for the carat that is filled with spaces that is the same
// length as the line of source code.
std::string CaratLine(LineEnd-LineStart, ' ');
// Highlight all of the characters covered by Ranges with ~ characters.
for (unsigned i = 0; i != NumRanges; ++i)
HighlightRange(Ranges[i], LineNo, CaratLine, SourceLine);
// Next, insert the carat itself.
if (ColNo-1 < CaratLine.size())
CaratLine[ColNo-1] = '^';
else
CaratLine.push_back('^');
// Scan the source line, looking for tabs. If we find any, manually expand
// them to 8 characters and update the CaratLine to match.
for (unsigned i = 0; i != SourceLine.size(); ++i) {
if (SourceLine[i] != '\t') continue;
// Replace this tab with at least one space.
SourceLine[i] = ' ';
// Compute the number of spaces we need to insert.
unsigned NumSpaces = ((i+8)&~7) - (i+1);
assert(NumSpaces < 8 && "Invalid computation of space amt");
// Insert spaces into the SourceLine.
SourceLine.insert(i+1, NumSpaces, ' ');
// Insert spaces or ~'s into CaratLine.
CaratLine.insert(i+1, NumSpaces, CaratLine[i] == '~' ? '~' : ' ');
}
// Finally, remove any blank spaces from the end of CaratLine.
while (CaratLine[CaratLine.size()-1] == ' ')
CaratLine.erase(CaratLine.end()-1);
// Emit what we have computed.
std::cerr << SourceLine << "\n";
std::cerr << CaratLine << "\n";
}
}

View File

@@ -1,46 +0,0 @@
//===--- TextDiagnosticPrinter.h - Text Diagnostic Client -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a concrete diagnostic client, which prints the diagnostics to
// standard error.
//
//===----------------------------------------------------------------------===//
#ifndef TEXT_DIAGNOSTIC_PRINTER_H_
#define TEXT_DIAGNOSTIC_PRINTER_H_
#include "TextDiagnostics.h"
#include "clang/Basic/SourceLocation.h"
namespace clang {
class SourceManager;
class TextDiagnosticPrinter : public TextDiagnostics {
SourceLocation LastWarningLoc;
public:
TextDiagnosticPrinter(SourceManager &sourceMgr)
: TextDiagnostics(sourceMgr) {}
void PrintIncludeStack(SourceLocation Pos);
void HighlightRange(const SourceRange &R, unsigned LineNo,
std::string &CaratLine,
const std::string &SourceLine);
unsigned GetTokenLength(SourceLocation Loc);
virtual void HandleDiagnostic(Diagnostic::Level DiagLevel,
SourceLocation Pos,
diag::kind ID, const std::string *Strs,
unsigned NumStrs,
const SourceRange *Ranges,
unsigned NumRanges);
};
} // end namspace clang
#endif

View File

@@ -1,58 +0,0 @@
//===--- TextDiagnostics.cpp - Text Diagnostics Parent Class --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the parent class for all text diagnostics.
//
//===----------------------------------------------------------------------===//
#include "TextDiagnostics.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/HeaderSearch.h"
using namespace clang;
TextDiagnostics:: ~TextDiagnostics() {}
std::string TextDiagnostics::FormatDiagnostic(Diagnostic::Level Level,
diag::kind ID,
const std::string *Strs,
unsigned NumStrs) {
std::string Msg = Diagnostic::getDescription(ID);
// Replace all instances of %0 in Msg with 'Extra'.
for (unsigned i = 0; i < Msg.size() - 1; ++i) {
if (Msg[i] == '%' && isdigit(Msg[i + 1])) {
unsigned StrNo = Msg[i + 1] - '0';
Msg = std::string(Msg.begin(), Msg.begin() + i) +
(StrNo < NumStrs ? Strs[StrNo] : "<<<INTERNAL ERROR>>>") +
std::string(Msg.begin() + i + 2, Msg.end());
}
}
return Msg;
}
bool TextDiagnostics::IgnoreDiagnostic(Diagnostic::Level Level,
SourceLocation Pos) {
if (Pos.isValid()) {
// If this is a warning or note, and if it a system header, suppress the
// diagnostic.
if (Level == Diagnostic::Warning ||
Level == Diagnostic::Note) {
if (const FileEntry *F = SourceMgr.getFileEntryForLoc(Pos)) {
DirectoryLookup::DirType DirInfo = TheHeaderSearch->getFileDirFlavor(F);
if (DirInfo == DirectoryLookup::SystemHeaderDir ||
DirInfo == DirectoryLookup::ExternCSystemHeaderDir)
return true;
}
}
}
return false;
}

View File

@@ -1,53 +0,0 @@
//===--- TextDiagnostics.h - Text Diagnostics Checkers ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the parent class for all text diagnostics.
//
//===----------------------------------------------------------------------===//
#ifndef TEXT_DIAGNOSTICS_H_
#define TEXT_DIAGNOSTICS_H_
#include "clang/Basic/Diagnostic.h"
namespace clang {
class SourceManager;
class HeaderSearch;
class Preprocessor;
class TextDiagnostics : public DiagnosticClient {
HeaderSearch *TheHeaderSearch;
protected:
SourceManager &SourceMgr;
Preprocessor *ThePreprocessor;
std::string FormatDiagnostic(Diagnostic::Level Level,
diag::kind ID,
const std::string *Strs,
unsigned NumStrs);
public:
TextDiagnostics(SourceManager &sourceMgr) : SourceMgr(sourceMgr) {}
virtual ~TextDiagnostics();
void setHeaderSearch(HeaderSearch &HS) { TheHeaderSearch = &HS; }
void setPreprocessor(Preprocessor &P) { ThePreprocessor = &P; }
virtual bool IgnoreDiagnostic(Diagnostic::Level Level,
SourceLocation Pos);
virtual void HandleDiagnostic(Diagnostic::Level DiagLevel,
SourceLocation Pos,
diag::kind ID, const std::string *Strs,
unsigned NumStrs,
const SourceRange *Ranges,
unsigned NumRanges) = 0;
};
} // end namspace clang
#endif

View File

@@ -1,420 +0,0 @@
//===--- X86Builtins.def - X86 Builtin function database --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86-specific builtin function database. Users of
// this file must define the BUILTIN macro to make use of this information.
//
//===----------------------------------------------------------------------===//
// FIXME: this needs to be the full list supported by GCC. Right now, I'm just
// adding stuff on demand.
// The format of this database matches clang/AST/Builtins.def.
BUILTIN(__builtin_ia32_emms , "v", "")
// FIXME: These types are incorrect.
// SSE intrinsics.
BUILTIN(__builtin_ia32_comieq, "v", "")
BUILTIN(__builtin_ia32_comilt, "v", "")
BUILTIN(__builtin_ia32_comile, "v", "")
BUILTIN(__builtin_ia32_comigt, "v", "")
BUILTIN(__builtin_ia32_comige, "v", "")
BUILTIN(__builtin_ia32_comineq, "v", "")
BUILTIN(__builtin_ia32_ucomieq, "v", "")
BUILTIN(__builtin_ia32_ucomilt, "v", "")
BUILTIN(__builtin_ia32_ucomile, "v", "")
BUILTIN(__builtin_ia32_ucomigt, "v", "")
BUILTIN(__builtin_ia32_ucomige, "v", "")
BUILTIN(__builtin_ia32_ucomineq, "v", "")
BUILTIN(__builtin_ia32_comisdeq, "v", "")
BUILTIN(__builtin_ia32_comisdlt, "v", "")
BUILTIN(__builtin_ia32_comisdle, "v", "")
BUILTIN(__builtin_ia32_comisdgt, "v", "")
BUILTIN(__builtin_ia32_comisdge, "v", "")
BUILTIN(__builtin_ia32_comisdneq, "v", "")
BUILTIN(__builtin_ia32_ucomisdeq, "v", "")
BUILTIN(__builtin_ia32_ucomisdlt, "v", "")
BUILTIN(__builtin_ia32_ucomisdle, "v", "")
BUILTIN(__builtin_ia32_ucomisdgt, "v", "")
BUILTIN(__builtin_ia32_ucomisdge, "v", "")
BUILTIN(__builtin_ia32_ucomisdneq, "v", "")
BUILTIN(__builtin_ia32_addps, "v", "")
BUILTIN(__builtin_ia32_subps, "v", "")
BUILTIN(__builtin_ia32_mulps, "v", "")
BUILTIN(__builtin_ia32_divps, "v", "")
BUILTIN(__builtin_ia32_addss, "v", "")
BUILTIN(__builtin_ia32_subss, "v", "")
BUILTIN(__builtin_ia32_mulss, "v", "")
BUILTIN(__builtin_ia32_divss, "v", "")
BUILTIN(__builtin_ia32_cmpeqps, "v", "")
BUILTIN(__builtin_ia32_cmpltps, "v", "")
BUILTIN(__builtin_ia32_cmpleps, "v", "")
BUILTIN(__builtin_ia32_cmpgtps, "v", "")
BUILTIN(__builtin_ia32_cmpgeps, "v", "")
BUILTIN(__builtin_ia32_cmpunordps, "v", "")
BUILTIN(__builtin_ia32_cmpneqps, "v", "")
BUILTIN(__builtin_ia32_cmpnltps, "v", "")
BUILTIN(__builtin_ia32_cmpnleps, "v", "")
BUILTIN(__builtin_ia32_cmpngtps, "v", "")
BUILTIN(__builtin_ia32_cmpngeps, "v", "")
BUILTIN(__builtin_ia32_cmpordps, "v", "")
BUILTIN(__builtin_ia32_cmpeqss, "v", "")
BUILTIN(__builtin_ia32_cmpltss, "v", "")
BUILTIN(__builtin_ia32_cmpless, "v", "")
BUILTIN(__builtin_ia32_cmpunordss, "v", "")
BUILTIN(__builtin_ia32_cmpneqss, "v", "")
BUILTIN(__builtin_ia32_cmpnltss, "v", "")
BUILTIN(__builtin_ia32_cmpnless, "v", "")
BUILTIN(__builtin_ia32_cmpngtss, "v", "")
BUILTIN(__builtin_ia32_cmpngess, "v", "")
BUILTIN(__builtin_ia32_cmpordss, "v", "")
BUILTIN(__builtin_ia32_minps, "v", "")
BUILTIN(__builtin_ia32_maxps, "v", "")
BUILTIN(__builtin_ia32_minss, "v", "")
BUILTIN(__builtin_ia32_maxss, "v", "")
BUILTIN(__builtin_ia32_andps, "v", "")
BUILTIN(__builtin_ia32_andnps, "v", "")
BUILTIN(__builtin_ia32_orps, "v", "")
BUILTIN(__builtin_ia32_xorps, "v", "")
BUILTIN(__builtin_ia32_movss, "v", "")
BUILTIN(__builtin_ia32_movhlps, "v", "")
BUILTIN(__builtin_ia32_movlhps, "v", "")
BUILTIN(__builtin_ia32_unpckhps, "v", "")
BUILTIN(__builtin_ia32_unpcklps, "v", "")
BUILTIN(__builtin_ia32_paddb, "v", "")
BUILTIN(__builtin_ia32_paddw, "v", "")
BUILTIN(__builtin_ia32_paddd, "v", "")
BUILTIN(__builtin_ia32_paddq, "v", "")
BUILTIN(__builtin_ia32_psubb, "v", "")
BUILTIN(__builtin_ia32_psubw, "v", "")
BUILTIN(__builtin_ia32_psubd, "v", "")
BUILTIN(__builtin_ia32_psubq, "v", "")
BUILTIN(__builtin_ia32_paddsb, "v", "")
BUILTIN(__builtin_ia32_paddsw, "v", "")
BUILTIN(__builtin_ia32_psubsb, "v", "")
BUILTIN(__builtin_ia32_psubsw, "v", "")
BUILTIN(__builtin_ia32_paddusb, "v", "")
BUILTIN(__builtin_ia32_paddusw, "v", "")
BUILTIN(__builtin_ia32_psubusb, "v", "")
BUILTIN(__builtin_ia32_psubusw, "v", "")
BUILTIN(__builtin_ia32_pmullw, "v", "")
BUILTIN(__builtin_ia32_pmulhw, "v", "")
BUILTIN(__builtin_ia32_pmulhuw, "v", "")
BUILTIN(__builtin_ia32_pand, "v", "")
BUILTIN(__builtin_ia32_pandn, "v", "")
BUILTIN(__builtin_ia32_por, "v", "")
BUILTIN(__builtin_ia32_pxor, "v", "")
BUILTIN(__builtin_ia32_pavgb, "v", "")
BUILTIN(__builtin_ia32_pavgw, "v", "")
BUILTIN(__builtin_ia32_pcmpeqb, "v", "")
BUILTIN(__builtin_ia32_pcmpeqw, "v", "")
BUILTIN(__builtin_ia32_pcmpeqd, "v", "")
BUILTIN(__builtin_ia32_pcmpgtb, "v", "")
BUILTIN(__builtin_ia32_pcmpgtw, "v", "")
BUILTIN(__builtin_ia32_pcmpgtd, "v", "")
BUILTIN(__builtin_ia32_pmaxub, "v", "")
BUILTIN(__builtin_ia32_pmaxsw, "v", "")
BUILTIN(__builtin_ia32_pminub, "v", "")
BUILTIN(__builtin_ia32_pminsw, "v", "")
BUILTIN(__builtin_ia32_punpckhbw, "v", "")
BUILTIN(__builtin_ia32_punpckhwd, "v", "")
BUILTIN(__builtin_ia32_punpckhdq, "v", "")
BUILTIN(__builtin_ia32_punpcklbw, "v", "")
BUILTIN(__builtin_ia32_punpcklwd, "v", "")
BUILTIN(__builtin_ia32_punpckldq, "v", "")
BUILTIN(__builtin_ia32_addpd, "v", "")
BUILTIN(__builtin_ia32_subpd, "v", "")
BUILTIN(__builtin_ia32_mulpd, "v", "")
BUILTIN(__builtin_ia32_divpd, "v", "")
BUILTIN(__builtin_ia32_addsd, "v", "")
BUILTIN(__builtin_ia32_subsd, "v", "")
BUILTIN(__builtin_ia32_mulsd, "v", "")
BUILTIN(__builtin_ia32_divsd, "v", "")
BUILTIN(__builtin_ia32_cmpeqpd, "v", "")
BUILTIN(__builtin_ia32_cmpltpd, "v", "")
BUILTIN(__builtin_ia32_cmplepd, "v", "")
BUILTIN(__builtin_ia32_cmpgtpd, "v", "")
BUILTIN(__builtin_ia32_cmpgepd, "v", "")
BUILTIN(__builtin_ia32_cmpunordpd, "v", "")
BUILTIN(__builtin_ia32_cmpneqpd, "v", "")
BUILTIN(__builtin_ia32_cmpnltpd, "v", "")
BUILTIN(__builtin_ia32_cmpnlepd, "v", "")
BUILTIN(__builtin_ia32_cmpngtpd, "v", "")
BUILTIN(__builtin_ia32_cmpngepd, "v", "")
BUILTIN(__builtin_ia32_cmpordpd, "v", "")
BUILTIN(__builtin_ia32_cmpeqsd, "v", "")
BUILTIN(__builtin_ia32_cmpltsd, "v", "")
BUILTIN(__builtin_ia32_cmplesd, "v", "")
BUILTIN(__builtin_ia32_cmpunordsd, "v", "")
BUILTIN(__builtin_ia32_cmpneqsd, "v", "")
BUILTIN(__builtin_ia32_cmpnltsd, "v", "")
BUILTIN(__builtin_ia32_cmpnlesd, "v", "")
BUILTIN(__builtin_ia32_cmpordsd, "v", "")
BUILTIN(__builtin_ia32_minpd, "v", "")
BUILTIN(__builtin_ia32_maxpd, "v", "")
BUILTIN(__builtin_ia32_minsd, "v", "")
BUILTIN(__builtin_ia32_maxsd, "v", "")
BUILTIN(__builtin_ia32_andpd, "v", "")
BUILTIN(__builtin_ia32_andnpd, "v", "")
BUILTIN(__builtin_ia32_orpd, "v", "")
BUILTIN(__builtin_ia32_xorpd, "v", "")
BUILTIN(__builtin_ia32_movsd, "v", "")
BUILTIN(__builtin_ia32_unpckhpd, "v", "")
BUILTIN(__builtin_ia32_unpcklpd, "v", "")
BUILTIN(__builtin_ia32_paddb128, "v", "")
BUILTIN(__builtin_ia32_paddw128, "v", "")
BUILTIN(__builtin_ia32_paddd128, "v", "")
BUILTIN(__builtin_ia32_paddq128, "v", "")
BUILTIN(__builtin_ia32_psubb128, "v", "")
BUILTIN(__builtin_ia32_psubw128, "v", "")
BUILTIN(__builtin_ia32_psubd128, "v", "")
BUILTIN(__builtin_ia32_psubq128, "v", "")
BUILTIN(__builtin_ia32_paddsb128, "v", "")
BUILTIN(__builtin_ia32_paddsw128, "v", "")
BUILTIN(__builtin_ia32_psubsb128, "v", "")
BUILTIN(__builtin_ia32_psubsw128, "v", "")
BUILTIN(__builtin_ia32_paddusb128, "v", "")
BUILTIN(__builtin_ia32_paddusw128, "v", "")
BUILTIN(__builtin_ia32_psubusb128, "v", "")
BUILTIN(__builtin_ia32_psubusw128, "v", "")
BUILTIN(__builtin_ia32_pmullw128, "v", "")
BUILTIN(__builtin_ia32_pmulhw128, "v", "")
BUILTIN(__builtin_ia32_pand128, "v", "")
BUILTIN(__builtin_ia32_pandn128, "v", "")
BUILTIN(__builtin_ia32_por128, "v", "")
BUILTIN(__builtin_ia32_pxor128, "v", "")
BUILTIN(__builtin_ia32_pavgb128, "v", "")
BUILTIN(__builtin_ia32_pavgw128, "v", "")
BUILTIN(__builtin_ia32_pcmpeqb128, "v", "")
BUILTIN(__builtin_ia32_pcmpeqw128, "v", "")
BUILTIN(__builtin_ia32_pcmpeqd128, "v", "")
BUILTIN(__builtin_ia32_pcmpgtb128, "v", "")
BUILTIN(__builtin_ia32_pcmpgtw128, "v", "")
BUILTIN(__builtin_ia32_pcmpgtd128, "v", "")
BUILTIN(__builtin_ia32_pmaxub128, "v", "")
BUILTIN(__builtin_ia32_pmaxsw128, "v", "")
BUILTIN(__builtin_ia32_pminub128, "v", "")
BUILTIN(__builtin_ia32_pminsw128, "v", "")
BUILTIN(__builtin_ia32_punpckhbw128, "v", "")
BUILTIN(__builtin_ia32_punpckhwd128, "v", "")
BUILTIN(__builtin_ia32_punpckhdq128, "v", "")
BUILTIN(__builtin_ia32_punpckhqdq128, "v", "")
BUILTIN(__builtin_ia32_punpcklbw128, "v", "")
BUILTIN(__builtin_ia32_punpcklwd128, "v", "")
BUILTIN(__builtin_ia32_punpckldq128, "v", "")
BUILTIN(__builtin_ia32_punpcklqdq128, "v", "")
BUILTIN(__builtin_ia32_packsswb128, "v", "")
BUILTIN(__builtin_ia32_packssdw128, "v", "")
BUILTIN(__builtin_ia32_packuswb128, "v", "")
BUILTIN(__builtin_ia32_pmulhuw128, "v", "")
BUILTIN(__builtin_ia32_addsubps, "v", "")
BUILTIN(__builtin_ia32_addsubpd, "v", "")
BUILTIN(__builtin_ia32_haddps, "v", "")
BUILTIN(__builtin_ia32_haddpd, "v", "")
BUILTIN(__builtin_ia32_hsubps, "v", "")
BUILTIN(__builtin_ia32_hsubpd, "v", "")
BUILTIN(__builtin_ia32_phaddw128, "v", "")
BUILTIN(__builtin_ia32_phaddw, "v", "")
BUILTIN(__builtin_ia32_phaddd128, "v", "")
BUILTIN(__builtin_ia32_phaddd, "v", "")
BUILTIN(__builtin_ia32_phaddsw128, "v", "")
BUILTIN(__builtin_ia32_phaddsw, "v", "")
BUILTIN(__builtin_ia32_phsubw128, "v", "")
BUILTIN(__builtin_ia32_phsubw, "v", "")
BUILTIN(__builtin_ia32_phsubd128, "v", "")
BUILTIN(__builtin_ia32_phsubd, "v", "")
BUILTIN(__builtin_ia32_phsubsw128, "v", "")
BUILTIN(__builtin_ia32_phsubsw, "v", "")
BUILTIN(__builtin_ia32_pmaddubsw128, "v", "")
BUILTIN(__builtin_ia32_pmaddubsw, "v", "")
BUILTIN(__builtin_ia32_pmulhrsw128, "v", "")
BUILTIN(__builtin_ia32_pmulhrsw, "v", "")
BUILTIN(__builtin_ia32_pshufb128, "v", "")
BUILTIN(__builtin_ia32_pshufb, "v", "")
BUILTIN(__builtin_ia32_psignb128, "v", "")
BUILTIN(__builtin_ia32_psignb, "v", "")
BUILTIN(__builtin_ia32_psignw128, "v", "")
BUILTIN(__builtin_ia32_psignw, "v", "")
BUILTIN(__builtin_ia32_psignd128, "v", "")
BUILTIN(__builtin_ia32_psignd, "v", "")
BUILTIN(__builtin_ia32_pabsb128, "v", "")
BUILTIN(__builtin_ia32_pabsb, "v", "")
BUILTIN(__builtin_ia32_pabsw128, "v", "")
BUILTIN(__builtin_ia32_pabsw, "v", "")
BUILTIN(__builtin_ia32_pabsd128, "v", "")
BUILTIN(__builtin_ia32_pabsd, "v", "")
BUILTIN(__builtin_ia32_psllw, "v", "")
BUILTIN(__builtin_ia32_pslld, "v", "")
BUILTIN(__builtin_ia32_psllq, "v", "")
BUILTIN(__builtin_ia32_psrlw, "v", "")
BUILTIN(__builtin_ia32_psrld, "v", "")
BUILTIN(__builtin_ia32_psrlq, "v", "")
BUILTIN(__builtin_ia32_psraw, "v", "")
BUILTIN(__builtin_ia32_psrad, "v", "")
BUILTIN(__builtin_ia32_pshufw, "v", "")
BUILTIN(__builtin_ia32_pmaddwd, "v", "")
BUILTIN(__builtin_ia32_packsswb, "v", "")
BUILTIN(__builtin_ia32_packssdw, "v", "")
BUILTIN(__builtin_ia32_packuswb, "v", "")
BUILTIN(__builtin_ia32_ldmxcsr, "v", "")
BUILTIN(__builtin_ia32_stmxcsr, "v", "")
BUILTIN(__builtin_ia32_cvtpi2ps, "v", "")
BUILTIN(__builtin_ia32_cvtps2pi, "v", "")
BUILTIN(__builtin_ia32_cvtsi2ss, "v", "")
BUILTIN(__builtin_ia32_cvtsi642ss, "v", "")
BUILTIN(__builtin_ia32_cvtss2si, "v", "")
BUILTIN(__builtin_ia32_cvtss2si64, "v", "")
BUILTIN(__builtin_ia32_cvttps2pi, "v", "")
BUILTIN(__builtin_ia32_cvttss2si, "v", "")
BUILTIN(__builtin_ia32_cvttss2si64, "v", "")
BUILTIN(__builtin_ia32_maskmovq, "v", "")
BUILTIN(__builtin_ia32_loadups, "v", "")
BUILTIN(__builtin_ia32_storeups, "v", "")
BUILTIN(__builtin_ia32_loadhps, "v", "")
BUILTIN(__builtin_ia32_loadlps, "v", "")
BUILTIN(__builtin_ia32_storehps, "v", "")
BUILTIN(__builtin_ia32_storelps, "v", "")
BUILTIN(__builtin_ia32_movmskps, "v", "")
BUILTIN(__builtin_ia32_pmovmskb, "v", "")
BUILTIN(__builtin_ia32_movntps, "v", "")
BUILTIN(__builtin_ia32_movntq, "v", "")
BUILTIN(__builtin_ia32_sfence, "v", "")
BUILTIN(__builtin_ia32_psadbw, "v", "")
BUILTIN(__builtin_ia32_rcpps, "v", "")
BUILTIN(__builtin_ia32_rcpss, "v", "")
BUILTIN(__builtin_ia32_rsqrtps, "v", "")
BUILTIN(__builtin_ia32_rsqrtss, "v", "")
BUILTIN(__builtin_ia32_sqrtps, "v", "")
BUILTIN(__builtin_ia32_sqrtss, "v", "")
BUILTIN(__builtin_ia32_shufps, "v", "")
BUILTIN(__builtin_ia32_femms, "v", "")
BUILTIN(__builtin_ia32_pavgusb, "v", "")
BUILTIN(__builtin_ia32_pf2id, "v", "")
BUILTIN(__builtin_ia32_pfacc, "v", "")
BUILTIN(__builtin_ia32_pfadd, "v", "")
BUILTIN(__builtin_ia32_pfcmpeq, "v", "")
BUILTIN(__builtin_ia32_pfcmpge, "v", "")
BUILTIN(__builtin_ia32_pfcmpgt, "v", "")
BUILTIN(__builtin_ia32_pfmax, "v", "")
BUILTIN(__builtin_ia32_pfmin, "v", "")
BUILTIN(__builtin_ia32_pfmul, "v", "")
BUILTIN(__builtin_ia32_pfrcp, "v", "")
BUILTIN(__builtin_ia32_pfrcpit1, "v", "")
BUILTIN(__builtin_ia32_pfrcpit2, "v", "")
BUILTIN(__builtin_ia32_pfrsqrt, "v", "")
BUILTIN(__builtin_ia32_pfrsqit1, "v", "")
BUILTIN(__builtin_ia32_pfsub, "v", "")
BUILTIN(__builtin_ia32_pfsubr, "v", "")
BUILTIN(__builtin_ia32_pi2fd, "v", "")
BUILTIN(__builtin_ia32_pmulhrw, "v", "")
BUILTIN(__builtin_ia32_pf2iw, "v", "")
BUILTIN(__builtin_ia32_pfnacc, "v", "")
BUILTIN(__builtin_ia32_pfpnacc, "v", "")
BUILTIN(__builtin_ia32_pi2fw, "v", "")
BUILTIN(__builtin_ia32_pswapdsf, "v", "")
BUILTIN(__builtin_ia32_pswapdsi, "v", "")
BUILTIN(__builtin_ia32_maskmovdqu, "v", "")
BUILTIN(__builtin_ia32_loadupd, "v", "")
BUILTIN(__builtin_ia32_storeupd, "v", "")
BUILTIN(__builtin_ia32_loadhpd, "v", "")
BUILTIN(__builtin_ia32_loadlpd, "v", "")
BUILTIN(__builtin_ia32_movmskpd, "v", "")
BUILTIN(__builtin_ia32_pmovmskb128, "v", "")
BUILTIN(__builtin_ia32_movnti, "v", "")
BUILTIN(__builtin_ia32_movntpd, "v", "")
BUILTIN(__builtin_ia32_movntdq, "v", "")
BUILTIN(__builtin_ia32_pshufd, "v", "")
BUILTIN(__builtin_ia32_pshuflw, "v", "")
BUILTIN(__builtin_ia32_pshufhw, "v", "")
BUILTIN(__builtin_ia32_psadbw128, "v", "")
BUILTIN(__builtin_ia32_sqrtpd, "v", "")
BUILTIN(__builtin_ia32_sqrtsd, "v", "")
BUILTIN(__builtin_ia32_shufpd, "v", "")
BUILTIN(__builtin_ia32_cvtdq2pd, "v", "")
BUILTIN(__builtin_ia32_cvtdq2ps, "v", "")
BUILTIN(__builtin_ia32_cvtpd2dq, "v", "")
BUILTIN(__builtin_ia32_cvtpd2pi, "v", "")
BUILTIN(__builtin_ia32_cvtpd2ps, "v", "")
BUILTIN(__builtin_ia32_cvttpd2dq, "v", "")
BUILTIN(__builtin_ia32_cvttpd2pi, "v", "")
BUILTIN(__builtin_ia32_cvtpi2pd, "v", "")
BUILTIN(__builtin_ia32_cvtsd2si, "v", "")
BUILTIN(__builtin_ia32_cvttsd2si, "v", "")
BUILTIN(__builtin_ia32_cvtsd2si64, "v", "")
BUILTIN(__builtin_ia32_cvttsd2si64, "v", "")
BUILTIN(__builtin_ia32_cvtps2dq, "v", "")
BUILTIN(__builtin_ia32_cvtps2pd, "v", "")
BUILTIN(__builtin_ia32_cvttps2dq, "v", "")
BUILTIN(__builtin_ia32_cvtsi2sd, "v", "")
BUILTIN(__builtin_ia32_cvtsi642sd, "v", "")
BUILTIN(__builtin_ia32_cvtsd2ss, "v", "")
BUILTIN(__builtin_ia32_cvtss2sd, "v", "")
BUILTIN(__builtin_ia32_clflush, "v", "")
BUILTIN(__builtin_ia32_lfence, "v", "")
BUILTIN(__builtin_ia32_mfence, "v", "")
BUILTIN(__builtin_ia32_loaddqu, "v", "")
BUILTIN(__builtin_ia32_storedqu, "v", "")
BUILTIN(__builtin_ia32_psllwi, "v", "")
BUILTIN(__builtin_ia32_pslldi, "v", "")
BUILTIN(__builtin_ia32_psllqi, "v", "")
BUILTIN(__builtin_ia32_psrawi, "v", "")
BUILTIN(__builtin_ia32_psradi, "v", "")
BUILTIN(__builtin_ia32_psrlwi, "v", "")
BUILTIN(__builtin_ia32_psrldi, "v", "")
BUILTIN(__builtin_ia32_psrlqi, "v", "")
BUILTIN(__builtin_ia32_pmuludq, "v", "")
BUILTIN(__builtin_ia32_pmuludq128, "v", "")
BUILTIN(__builtin_ia32_psllw128, "v", "")
BUILTIN(__builtin_ia32_pslld128, "v", "")
BUILTIN(__builtin_ia32_psllq128, "v", "")
BUILTIN(__builtin_ia32_psrlw128, "v", "")
BUILTIN(__builtin_ia32_psrld128, "v", "")
BUILTIN(__builtin_ia32_psrlq128, "v", "")
BUILTIN(__builtin_ia32_psraw128, "v", "")
BUILTIN(__builtin_ia32_psrad128, "v", "")
BUILTIN(__builtin_ia32_pslldqi128, "v", "")
BUILTIN(__builtin_ia32_psllwi128, "v", "")
BUILTIN(__builtin_ia32_pslldi128, "v", "")
BUILTIN(__builtin_ia32_psllqi128, "v", "")
BUILTIN(__builtin_ia32_psrldqi128, "v", "")
BUILTIN(__builtin_ia32_psrlwi128, "v", "")
BUILTIN(__builtin_ia32_psrldi128, "v", "")
BUILTIN(__builtin_ia32_psrlqi128, "v", "")
BUILTIN(__builtin_ia32_psrawi128, "v", "")
BUILTIN(__builtin_ia32_psradi128, "v", "")
BUILTIN(__builtin_ia32_pmaddwd128, "v", "")
BUILTIN(__builtin_ia32_monitor, "v", "")
BUILTIN(__builtin_ia32_mwait, "v", "")
BUILTIN(__builtin_ia32_movshdup, "v", "")
BUILTIN(__builtin_ia32_movsldup, "v", "")
BUILTIN(__builtin_ia32_lddqu, "v", "")
BUILTIN(__builtin_ia32_palignr128, "v", "")
BUILTIN(__builtin_ia32_palignr, "v", "")
BUILTIN(__builtin_ia32_vec_init_v2si, "v", "")
BUILTIN(__builtin_ia32_vec_init_v4hi, "v", "")
BUILTIN(__builtin_ia32_vec_init_v8qi, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v2df, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v2di, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v4sf, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v4si, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v8hi, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v4hi, "v", "")
BUILTIN(__builtin_ia32_vec_ext_v2si, "v", "")
BUILTIN(__builtin_ia32_vec_set_v8hi, "v", "")
BUILTIN(__builtin_ia32_vec_set_v4hi, "v", "")
// Apple local SSE builtins? These are probably not needed eventually, but are
// in the apple-gcc xmmintrin.h file (rdar://4099020).
BUILTIN(__builtin_ia32_movqv4si, "v", "")
BUILTIN(__builtin_ia32_loadlv4si, "v", "")
BUILTIN(__builtin_ia32_storelv4si, "v", "")
#undef BUILTIN

View File

@@ -1,978 +0,0 @@
//===--- clang.cpp - C-Language Front-end ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This utility may be invoked in the following manner:
// clang --help - Output help info.
// clang [options] - Read from stdin.
// clang [options] file - Read from "file".
// clang [options] file1 file2 - Read these files.
//
//===----------------------------------------------------------------------===//
//
// TODO: Options to support:
//
// -ffatal-errors
// -ftabstop=width
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "ASTStreamers.h"
#include "TextDiagnosticBuffer.h"
#include "TextDiagnosticPrinter.h"
#include "clang/Parse/Parser.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/Signals.h"
#include <memory>
using namespace clang;
//===----------------------------------------------------------------------===//
// Global options.
//===----------------------------------------------------------------------===//
static llvm::cl::opt<bool>
Verbose("v", llvm::cl::desc("Enable verbose output"));
static llvm::cl::opt<bool>
Stats("stats", llvm::cl::desc("Print performance metrics and statistics"));
enum ProgActions {
EmitLLVM, // Emit a .ll file.
ParseASTPrint, // Parse ASTs and print them.
ParseASTDump, // Parse ASTs and dump them.
ParseASTCheck, // Parse ASTs and check diagnostics.
ParseAST, // Parse ASTs.
ParseCFGDump, // Parse ASTS. Build CFGs. Print CFGs.
ParseCFGView, // Parse ASTS. Build CFGs. View CFGs.
AnalysisLiveVariables, // Print results of live-variable analysis.
WarnDeadStores, // Run DeadStores checker on parsed ASTs.
ParsePrintCallbacks, // Parse and print each callback.
ParseSyntaxOnly, // Parse and perform semantic analysis.
ParseNoop, // Parse with noop callbacks.
RunPreprocessorOnly, // Just lex, no output.
PrintPreprocessedInput, // -E mode.
DumpTokens // Token dump mode.
};
static llvm::cl::opt<ProgActions>
ProgAction(llvm::cl::desc("Choose output type:"), llvm::cl::ZeroOrMore,
llvm::cl::init(ParseSyntaxOnly),
llvm::cl::values(
clEnumValN(RunPreprocessorOnly, "Eonly",
"Just run preprocessor, no output (for timings)"),
clEnumValN(PrintPreprocessedInput, "E",
"Run preprocessor, emit preprocessed file"),
clEnumValN(DumpTokens, "dumptokens",
"Run preprocessor, dump internal rep of tokens"),
clEnumValN(ParseNoop, "parse-noop",
"Run parser with noop callbacks (for timings)"),
clEnumValN(ParseSyntaxOnly, "fsyntax-only",
"Run parser and perform semantic analysis"),
clEnumValN(ParsePrintCallbacks, "parse-print-callbacks",
"Run parser and print each callback invoked"),
clEnumValN(ParseAST, "parse-ast",
"Run parser and build ASTs"),
clEnumValN(ParseASTPrint, "parse-ast-print",
"Run parser, build ASTs, then print ASTs"),
clEnumValN(ParseASTDump, "parse-ast-dump",
"Run parser, build ASTs, then dump them"),
clEnumValN(ParseASTCheck, "parse-ast-check",
"Run parser, build ASTs, then check diagnostics"),
clEnumValN(ParseCFGDump, "dump-cfg",
"Run parser, then build and print CFGs."),
clEnumValN(ParseCFGView, "view-cfg",
"Run parser, then build and view CFGs with Graphviz."),
clEnumValN(AnalysisLiveVariables, "dump-live-variables",
"Print results of live variable analysis."),
clEnumValN(WarnDeadStores, "check-dead-stores",
"Flag warnings of stores to dead variables."),
clEnumValN(EmitLLVM, "emit-llvm",
"Build ASTs then convert to LLVM, emit .ll file"),
clEnumValEnd));
//===----------------------------------------------------------------------===//
// Language Options
//===----------------------------------------------------------------------===//
enum LangKind {
langkind_unspecified,
langkind_c,
langkind_c_cpp,
langkind_cxx,
langkind_cxx_cpp,
langkind_objc,
langkind_objc_cpp,
langkind_objcxx,
langkind_objcxx_cpp
};
/* TODO: GCC also accepts:
c-header c++-header objective-c-header objective-c++-header
assembler assembler-with-cpp
ada, f77*, ratfor (!), f95, java, treelang
*/
static llvm::cl::opt<LangKind>
BaseLang("x", llvm::cl::desc("Base language to compile"),
llvm::cl::init(langkind_unspecified),
llvm::cl::values(clEnumValN(langkind_c, "c", "C"),
clEnumValN(langkind_cxx, "c++", "C++"),
clEnumValN(langkind_objc, "objective-c", "Objective C"),
clEnumValN(langkind_objcxx,"objective-c++","Objective C++"),
clEnumValN(langkind_c_cpp, "c-cpp-output",
"Preprocessed C"),
clEnumValN(langkind_cxx_cpp, "c++-cpp-output",
"Preprocessed C++"),
clEnumValN(langkind_objc_cpp, "objective-c-cpp-output",
"Preprocessed Objective C"),
clEnumValN(langkind_objcxx_cpp,"objective-c++-cpp-output",
"Preprocessed Objective C++"),
clEnumValEnd));
static llvm::cl::opt<bool>
LangObjC("ObjC", llvm::cl::desc("Set base language to Objective-C"),
llvm::cl::Hidden);
static llvm::cl::opt<bool>
LangObjCXX("ObjC++", llvm::cl::desc("Set base language to Objective-C++"),
llvm::cl::Hidden);
/// InitializeBaseLanguage - Handle the -x foo options or infer a base language
/// from the input filename.
static void InitializeBaseLanguage(LangOptions &Options,
const std::string &Filename) {
if (BaseLang == langkind_unspecified) {
std::string::size_type DotPos = Filename.rfind('.');
if (LangObjC) {
BaseLang = langkind_objc;
} else if (LangObjCXX) {
BaseLang = langkind_objcxx;
} else if (DotPos == std::string::npos) {
BaseLang = langkind_c; // Default to C if no extension.
} else {
std::string Ext = std::string(Filename.begin()+DotPos+1, Filename.end());
// C header: .h
// C++ header: .hh or .H;
// assembler no preprocessing: .s
// assembler: .S
if (Ext == "c")
BaseLang = langkind_c;
else if (Ext == "i")
BaseLang = langkind_c_cpp;
else if (Ext == "ii")
BaseLang = langkind_cxx_cpp;
else if (Ext == "m")
BaseLang = langkind_objc;
else if (Ext == "mi")
BaseLang = langkind_objc_cpp;
else if (Ext == "mm" || Ext == "M")
BaseLang = langkind_objcxx;
else if (Ext == "mii")
BaseLang = langkind_objcxx_cpp;
else if (Ext == "C" || Ext == "cc" || Ext == "cpp" || Ext == "CPP" ||
Ext == "c++" || Ext == "cp" || Ext == "cxx")
BaseLang = langkind_cxx;
else
BaseLang = langkind_c;
}
}
// FIXME: implement -fpreprocessed mode.
bool NoPreprocess = false;
switch (BaseLang) {
default: assert(0 && "Unknown language kind!");
case langkind_c_cpp:
NoPreprocess = true;
// FALLTHROUGH
case langkind_c:
break;
case langkind_cxx_cpp:
NoPreprocess = true;
// FALLTHROUGH
case langkind_cxx:
Options.CPlusPlus = 1;
break;
case langkind_objc_cpp:
NoPreprocess = true;
// FALLTHROUGH
case langkind_objc:
Options.ObjC1 = Options.ObjC2 = 1;
break;
case langkind_objcxx_cpp:
NoPreprocess = true;
// FALLTHROUGH
case langkind_objcxx:
Options.ObjC1 = Options.ObjC2 = 1;
Options.CPlusPlus = 1;
break;
}
}
/// LangStds - Language standards we support.
enum LangStds {
lang_unspecified,
lang_c89, lang_c94, lang_c99,
lang_gnu89, lang_gnu99,
lang_cxx98, lang_gnucxx98,
lang_cxx0x, lang_gnucxx0x
};
static llvm::cl::opt<LangStds>
LangStd("std", llvm::cl::desc("Language standard to compile for"),
llvm::cl::init(lang_unspecified),
llvm::cl::values(clEnumValN(lang_c89, "c89", "ISO C 1990"),
clEnumValN(lang_c89, "c90", "ISO C 1990"),
clEnumValN(lang_c89, "iso9899:1990", "ISO C 1990"),
clEnumValN(lang_c94, "iso9899:199409",
"ISO C 1990 with amendment 1"),
clEnumValN(lang_c99, "c99", "ISO C 1999"),
// clEnumValN(lang_c99, "c9x", "ISO C 1999"),
clEnumValN(lang_c99, "iso9899:1999", "ISO C 1999"),
// clEnumValN(lang_c99, "iso9899:199x", "ISO C 1999"),
clEnumValN(lang_gnu89, "gnu89",
"ISO C 1990 with GNU extensions (default for C)"),
clEnumValN(lang_gnu99, "gnu99",
"ISO C 1999 with GNU extensions"),
clEnumValN(lang_gnu99, "gnu9x",
"ISO C 1999 with GNU extensions"),
clEnumValN(lang_cxx98, "c++98",
"ISO C++ 1998 with amendments"),
clEnumValN(lang_gnucxx98, "gnu++98",
"ISO C++ 1998 with amendments and GNU "
"extensions (default for C++)"),
clEnumValN(lang_cxx0x, "c++0x",
"Upcoming ISO C++ 200x with amendments"),
clEnumValN(lang_gnucxx0x, "gnu++0x",
"Upcoming ISO C++ 200x with amendments and GNU "
"extensions (default for C++)"),
clEnumValEnd));
static llvm::cl::opt<bool>
NoOperatorNames("fno-operator-names",
llvm::cl::desc("Do not treat C++ operator name keywords as "
"synonyms for operators"));
// FIXME: add:
// -ansi
// -trigraphs
// -fdollars-in-identifiers
static void InitializeLanguageStandard(LangOptions &Options) {
if (LangStd == lang_unspecified) {
// Based on the base language, pick one.
switch (BaseLang) {
default: assert(0 && "Unknown base language");
case langkind_c:
case langkind_c_cpp:
case langkind_objc:
case langkind_objc_cpp:
LangStd = lang_gnu99;
break;
case langkind_cxx:
case langkind_cxx_cpp:
case langkind_objcxx:
case langkind_objcxx_cpp:
LangStd = lang_gnucxx98;
break;
}
}
switch (LangStd) {
default: assert(0 && "Unknown language standard!");
// Fall through from newer standards to older ones. This isn't really right.
// FIXME: Enable specifically the right features based on the language stds.
case lang_gnucxx0x:
case lang_cxx0x:
Options.CPlusPlus0x = 1;
// FALL THROUGH
case lang_gnucxx98:
case lang_cxx98:
Options.CPlusPlus = 1;
Options.CXXOperatorNames = !NoOperatorNames;
// FALL THROUGH.
case lang_gnu99:
case lang_c99:
Options.Digraphs = 1;
Options.C99 = 1;
Options.HexFloats = 1;
// FALL THROUGH.
case lang_gnu89:
Options.BCPLComment = 1; // Only for C99/C++.
// FALL THROUGH.
case lang_c94:
case lang_c89:
break;
}
Options.Trigraphs = 1; // -trigraphs or -ansi
Options.DollarIdents = 1; // FIXME: Really a target property.
}
//===----------------------------------------------------------------------===//
// Our DiagnosticClient implementation
//===----------------------------------------------------------------------===//
// FIXME: Werror should take a list of things, -Werror=foo,bar
static llvm::cl::opt<bool>
WarningsAsErrors("Werror", llvm::cl::desc("Treat all warnings as errors"));
static llvm::cl::opt<bool>
WarnOnExtensions("pedantic", llvm::cl::init(false),
llvm::cl::desc("Issue a warning on uses of GCC extensions"));
static llvm::cl::opt<bool>
ErrorOnExtensions("pedantic-errors",
llvm::cl::desc("Issue an error on uses of GCC extensions"));
static llvm::cl::opt<bool>
WarnUnusedMacros("Wunused_macros",
llvm::cl::desc("Warn for unused macros in the main translation unit"));
/// InitializeDiagnostics - Initialize the diagnostic object, based on the
/// current command line option settings.
static void InitializeDiagnostics(Diagnostic &Diags) {
Diags.setWarningsAsErrors(WarningsAsErrors);
Diags.setWarnOnExtensions(WarnOnExtensions);
Diags.setErrorOnExtensions(ErrorOnExtensions);
// Silence the "macro is not used" warning unless requested.
if (!WarnUnusedMacros)
Diags.setDiagnosticMapping(diag::pp_macro_not_used, diag::MAP_IGNORE);
}
//===----------------------------------------------------------------------===//
// Preprocessor Initialization
//===----------------------------------------------------------------------===//
// FIXME: Preprocessor builtins to support.
// -A... - Play with #assertions
// -undef - Undefine all predefined macros
static llvm::cl::list<std::string>
D_macros("D", llvm::cl::value_desc("macro"), llvm::cl::Prefix,
llvm::cl::desc("Predefine the specified macro"));
static llvm::cl::list<std::string>
U_macros("U", llvm::cl::value_desc("macro"), llvm::cl::Prefix,
llvm::cl::desc("Undefine the specified macro"));
// Append a #define line to Buf for Macro. Macro should be of the form XXX,
// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
// "#define XXX Y z W". To get a #define with no value, use "XXX=".
static void DefineBuiltinMacro(std::vector<char> &Buf, const char *Macro,
const char *Command = "#define ") {
Buf.insert(Buf.end(), Command, Command+strlen(Command));
if (const char *Equal = strchr(Macro, '=')) {
// Turn the = into ' '.
Buf.insert(Buf.end(), Macro, Equal);
Buf.push_back(' ');
Buf.insert(Buf.end(), Equal+1, Equal+strlen(Equal));
} else {
// Push "macroname 1".
Buf.insert(Buf.end(), Macro, Macro+strlen(Macro));
Buf.push_back(' ');
Buf.push_back('1');
}
Buf.push_back('\n');
}
static void InitializePredefinedMacros(Preprocessor &PP,
std::vector<char> &Buf) {
// FIXME: Implement magic like cpp_init_builtins for things like __STDC__
// and __DATE__ etc.
#if 0
/* __STDC__ has the value 1 under normal circumstances.
However, if (a) we are in a system header, (b) the option
stdc_0_in_system_headers is true (set by target config), and
(c) we are not in strictly conforming mode, then it has the
value 0. (b) and (c) are already checked in cpp_init_builtins. */
//case BT_STDC:
if (cpp_in_system_header (pfile))
number = 0;
else
number = 1;
break;
#endif
// These should all be defined in the preprocessor according to the
// current language configuration.
DefineBuiltinMacro(Buf, "__STDC__=1");
//DefineBuiltinMacro(Buf, "__ASSEMBLER__=1");
if (PP.getLangOptions().C99 && !PP.getLangOptions().CPlusPlus)
DefineBuiltinMacro(Buf, "__STDC_VERSION__=199901L");
else if (0) // STDC94 ?
DefineBuiltinMacro(Buf, "__STDC_VERSION__=199409L");
DefineBuiltinMacro(Buf, "__STDC_HOSTED__=1");
if (PP.getLangOptions().ObjC1)
DefineBuiltinMacro(Buf, "__OBJC__=1");
if (PP.getLangOptions().ObjC2)
DefineBuiltinMacro(Buf, "__OBJC2__=1");
// Get the target #defines.
PP.getTargetInfo().getTargetDefines(Buf);
// Compiler set macros.
DefineBuiltinMacro(Buf, "__APPLE_CC__=5250");
DefineBuiltinMacro(Buf, "__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__=1030");
DefineBuiltinMacro(Buf, "__GNUC_MINOR__=0");
DefineBuiltinMacro(Buf, "__GNUC_PATCHLEVEL__=1");
DefineBuiltinMacro(Buf, "__GNUC__=4");
DefineBuiltinMacro(Buf, "__GXX_ABI_VERSION=1002");
DefineBuiltinMacro(Buf, "__VERSION__=\"4.0.1 (Apple Computer, Inc. "
"build 5250)\"");
// Build configuration options.
DefineBuiltinMacro(Buf, "__DYNAMIC__=1");
DefineBuiltinMacro(Buf, "__FINITE_MATH_ONLY__=0");
DefineBuiltinMacro(Buf, "__NO_INLINE__=1");
DefineBuiltinMacro(Buf, "__PIC__=1");
if (PP.getLangOptions().CPlusPlus) {
DefineBuiltinMacro(Buf, "__DEPRECATED=1");
DefineBuiltinMacro(Buf, "__EXCEPTIONS=1");
DefineBuiltinMacro(Buf, "__GNUG__=4");
DefineBuiltinMacro(Buf, "__GXX_WEAK__=1");
DefineBuiltinMacro(Buf, "__cplusplus=1");
DefineBuiltinMacro(Buf, "__private_extern__=extern");
}
// FIXME: Should emit a #line directive here.
// Add macros from the command line.
// FIXME: Should traverse the #define/#undef lists in parallel.
for (unsigned i = 0, e = D_macros.size(); i != e; ++i)
DefineBuiltinMacro(Buf, D_macros[i].c_str());
for (unsigned i = 0, e = U_macros.size(); i != e; ++i)
DefineBuiltinMacro(Buf, U_macros[i].c_str(), "#undef ");
}
//===----------------------------------------------------------------------===//
// Preprocessor include path information.
//===----------------------------------------------------------------------===//
// This tool exports a large number of command line options to control how the
// preprocessor searches for header files. At root, however, the Preprocessor
// object takes a very simple interface: a list of directories to search for
//
// FIXME: -nostdinc,-nostdinc++
// FIXME: -imultilib
//
// FIXME: -include,-imacros
static llvm::cl::opt<bool>
nostdinc("nostdinc", llvm::cl::desc("Disable standard #include directories"));
// Various command line options. These four add directories to each chain.
static llvm::cl::list<std::string>
F_dirs("F", llvm::cl::value_desc("directory"), llvm::cl::Prefix,
llvm::cl::desc("Add directory to framework include search path"));
static llvm::cl::list<std::string>
I_dirs("I", llvm::cl::value_desc("directory"), llvm::cl::Prefix,
llvm::cl::desc("Add directory to include search path"));
static llvm::cl::list<std::string>
idirafter_dirs("idirafter", llvm::cl::value_desc("directory"), llvm::cl::Prefix,
llvm::cl::desc("Add directory to AFTER include search path"));
static llvm::cl::list<std::string>
iquote_dirs("iquote", llvm::cl::value_desc("directory"), llvm::cl::Prefix,
llvm::cl::desc("Add directory to QUOTE include search path"));
static llvm::cl::list<std::string>
isystem_dirs("isystem", llvm::cl::value_desc("directory"), llvm::cl::Prefix,
llvm::cl::desc("Add directory to SYSTEM include search path"));
// These handle -iprefix/-iwithprefix/-iwithprefixbefore.
static llvm::cl::list<std::string>
iprefix_vals("iprefix", llvm::cl::value_desc("prefix"), llvm::cl::Prefix,
llvm::cl::desc("Set the -iwithprefix/-iwithprefixbefore prefix"));
static llvm::cl::list<std::string>
iwithprefix_vals("iwithprefix", llvm::cl::value_desc("dir"), llvm::cl::Prefix,
llvm::cl::desc("Set directory to SYSTEM include search path with prefix"));
static llvm::cl::list<std::string>
iwithprefixbefore_vals("iwithprefixbefore", llvm::cl::value_desc("dir"),
llvm::cl::Prefix,
llvm::cl::desc("Set directory to include search path with prefix"));
static llvm::cl::opt<std::string>
isysroot("isysroot", llvm::cl::value_desc("dir"), llvm::cl::init("/"),
llvm::cl::desc("Set the system root directory (usually /)"));
// Finally, implement the code that groks the options above.
enum IncludeDirGroup {
Quoted = 0,
Angled,
System,
After
};
static std::vector<DirectoryLookup> IncludeGroup[4];
/// AddPath - Add the specified path to the specified group list.
///
static void AddPath(const std::string &Path, IncludeDirGroup Group,
bool isCXXAware, bool isUserSupplied,
bool isFramework, FileManager &FM) {
const DirectoryEntry *DE;
if (Group == System)
DE = FM.getDirectory(isysroot + "/" + Path);
else
DE = FM.getDirectory(Path);
if (DE == 0) {
if (Verbose)
fprintf(stderr, "ignoring nonexistent directory \"%s\"\n",
Path.c_str());
return;
}
DirectoryLookup::DirType Type;
if (Group == Quoted || Group == Angled)
Type = DirectoryLookup::NormalHeaderDir;
else if (isCXXAware)
Type = DirectoryLookup::SystemHeaderDir;
else
Type = DirectoryLookup::ExternCSystemHeaderDir;
IncludeGroup[Group].push_back(DirectoryLookup(DE, Type, isUserSupplied,
isFramework));
}
/// RemoveDuplicates - If there are duplicate directory entries in the specified
/// search list, remove the later (dead) ones.
static void RemoveDuplicates(std::vector<DirectoryLookup> &SearchList) {
std::set<const DirectoryEntry *> SeenDirs;
for (unsigned i = 0; i != SearchList.size(); ++i) {
// If this isn't the first time we've seen this dir, remove it.
if (!SeenDirs.insert(SearchList[i].getDir()).second) {
if (Verbose)
fprintf(stderr, "ignoring duplicate directory \"%s\"\n",
SearchList[i].getDir()->getName());
SearchList.erase(SearchList.begin()+i);
--i;
}
}
}
/// InitializeIncludePaths - Process the -I options and set them in the
/// HeaderSearch object.
static void InitializeIncludePaths(HeaderSearch &Headers, FileManager &FM,
Diagnostic &Diags, const LangOptions &Lang) {
// Handle -F... options.
for (unsigned i = 0, e = F_dirs.size(); i != e; ++i)
AddPath(F_dirs[i], Angled, false, true, true, FM);
// Handle -I... options.
for (unsigned i = 0, e = I_dirs.size(); i != e; ++i) {
if (I_dirs[i] == "-") {
// -I- is a deprecated GCC feature.
Diags.Report(SourceLocation(), diag::err_pp_I_dash_not_supported);
} else {
AddPath(I_dirs[i], Angled, false, true, false, FM);
}
}
// Handle -idirafter... options.
for (unsigned i = 0, e = idirafter_dirs.size(); i != e; ++i)
AddPath(idirafter_dirs[i], After, false, true, false, FM);
// Handle -iquote... options.
for (unsigned i = 0, e = iquote_dirs.size(); i != e; ++i)
AddPath(iquote_dirs[i], Quoted, false, true, false, FM);
// Handle -isystem... options.
for (unsigned i = 0, e = isystem_dirs.size(); i != e; ++i)
AddPath(isystem_dirs[i], System, false, true, false, FM);
// Walk the -iprefix/-iwithprefix/-iwithprefixbefore argument lists in
// parallel, processing the values in order of occurance to get the right
// prefixes.
{
std::string Prefix = ""; // FIXME: this isn't the correct default prefix.
unsigned iprefix_idx = 0;
unsigned iwithprefix_idx = 0;
unsigned iwithprefixbefore_idx = 0;
bool iprefix_done = iprefix_vals.empty();
bool iwithprefix_done = iwithprefix_vals.empty();
bool iwithprefixbefore_done = iwithprefixbefore_vals.empty();
while (!iprefix_done || !iwithprefix_done || !iwithprefixbefore_done) {
if (!iprefix_done &&
(iwithprefix_done ||
iprefix_vals.getPosition(iprefix_idx) <
iwithprefix_vals.getPosition(iwithprefix_idx)) &&
(iwithprefixbefore_done ||
iprefix_vals.getPosition(iprefix_idx) <
iwithprefixbefore_vals.getPosition(iwithprefixbefore_idx))) {
Prefix = iprefix_vals[iprefix_idx];
++iprefix_idx;
iprefix_done = iprefix_idx == iprefix_vals.size();
} else if (!iwithprefix_done &&
(iwithprefixbefore_done ||
iwithprefix_vals.getPosition(iwithprefix_idx) <
iwithprefixbefore_vals.getPosition(iwithprefixbefore_idx))) {
AddPath(Prefix+iwithprefix_vals[iwithprefix_idx],
System, false, false, false, FM);
++iwithprefix_idx;
iwithprefix_done = iwithprefix_idx == iwithprefix_vals.size();
} else {
AddPath(Prefix+iwithprefixbefore_vals[iwithprefixbefore_idx],
Angled, false, false, false, FM);
++iwithprefixbefore_idx;
iwithprefixbefore_done =
iwithprefixbefore_idx == iwithprefixbefore_vals.size();
}
}
}
// FIXME: Add contents of the CPATH, C_INCLUDE_PATH, CPLUS_INCLUDE_PATH,
// OBJC_INCLUDE_PATH, OBJCPLUS_INCLUDE_PATH environment variables.
// FIXME: temporary hack: hard-coded paths.
// FIXME: get these from the target?
if (!nostdinc) {
if (Lang.CPlusPlus) {
AddPath("/usr/include/c++/4.0.0", System, true, false, false, FM);
AddPath("/usr/include/c++/4.0.0/i686-apple-darwin8", System, true, false,
false, FM);
AddPath("/usr/include/c++/4.0.0/backward", System, true, false, false,FM);
}
AddPath("/usr/local/include", System, false, false, false, FM);
// leopard
AddPath("/usr/lib/gcc/i686-apple-darwin9/4.0.1/include", System,
false, false, false, FM);
AddPath("/usr/lib/gcc/powerpc-apple-darwin9/4.0.1/include",
System, false, false, false, FM);
AddPath("/usr/lib/gcc/powerpc-apple-darwin9/"
"4.0.1/../../../../powerpc-apple-darwin0/include",
System, false, false, false, FM);
// tiger
AddPath("/usr/lib/gcc/i686-apple-darwin8/4.0.1/include", System,
false, false, false, FM);
AddPath("/usr/lib/gcc/powerpc-apple-darwin8/4.0.1/include",
System, false, false, false, FM);
AddPath("/usr/lib/gcc/powerpc-apple-darwin8/"
"4.0.1/../../../../powerpc-apple-darwin8/include",
System, false, false, false, FM);
AddPath("/usr/include", System, false, false, false, FM);
AddPath("/System/Library/Frameworks", System, true, false, true, FM);
AddPath("/Library/Frameworks", System, true, false, true, FM);
}
// Now that we have collected all of the include paths, merge them all
// together and tell the preprocessor about them.
// Concatenate ANGLE+SYSTEM+AFTER chains together into SearchList.
std::vector<DirectoryLookup> SearchList;
SearchList = IncludeGroup[Angled];
SearchList.insert(SearchList.end(), IncludeGroup[System].begin(),
IncludeGroup[System].end());
SearchList.insert(SearchList.end(), IncludeGroup[After].begin(),
IncludeGroup[After].end());
RemoveDuplicates(SearchList);
RemoveDuplicates(IncludeGroup[Quoted]);
// Prepend QUOTED list on the search list.
SearchList.insert(SearchList.begin(), IncludeGroup[Quoted].begin(),
IncludeGroup[Quoted].end());
bool DontSearchCurDir = false; // TODO: set to true if -I- is set?
Headers.SetSearchPaths(SearchList, IncludeGroup[Quoted].size(),
DontSearchCurDir);
// If verbose, print the list of directories that will be searched.
if (Verbose) {
fprintf(stderr, "#include \"...\" search starts here:\n");
unsigned QuotedIdx = IncludeGroup[Quoted].size();
for (unsigned i = 0, e = SearchList.size(); i != e; ++i) {
if (i == QuotedIdx)
fprintf(stderr, "#include <...> search starts here:\n");
fprintf(stderr, " %s\n", SearchList[i].getDir()->getName());
}
}
}
// Read any files specified by -imacros or -include.
static void ReadPrologFiles(Preprocessor &PP, std::vector<char> &Buf) {
// FIXME: IMPLEMENT
}
//===----------------------------------------------------------------------===//
// Basic Parser driver
//===----------------------------------------------------------------------===//
static void ParseFile(Preprocessor &PP, MinimalAction *PA, unsigned MainFileID){
Parser P(PP, *PA);
PP.EnterSourceFile(MainFileID, 0, true);
// Parsing the specified input file.
P.ParseTranslationUnit();
delete PA;
}
//===----------------------------------------------------------------------===//
// Main driver
//===----------------------------------------------------------------------===//
/// InitializePreprocessor - Initialize the preprocessor getting it and the
/// environment ready to process a single file. This returns the file ID for the
/// input file. If a failure happens, it returns 0.
///
static unsigned InitializePreprocessor(Preprocessor &PP,
const std::string &InFile,
SourceManager &SourceMgr,
HeaderSearch &HeaderInfo,
const LangOptions &LangInfo,
std::vector<char> &PrologMacros) {
FileManager &FileMgr = HeaderInfo.getFileMgr();
// Install things like __POWERPC__, __GNUC__, etc into the macro table.
InitializePredefinedMacros(PP, PrologMacros);
// Read any files specified by -imacros or -include.
ReadPrologFiles(PP, PrologMacros);
// Figure out where to get and map in the main file.
unsigned MainFileID = 0;
if (InFile != "-") {
const FileEntry *File = FileMgr.getFile(InFile);
if (File) MainFileID = SourceMgr.createFileID(File, SourceLocation());
if (MainFileID == 0) {
fprintf(stderr, "Error reading '%s'!\n",InFile.c_str());
return 0;
}
} else {
llvm::MemoryBuffer *SB = llvm::MemoryBuffer::getSTDIN();
if (SB) MainFileID = SourceMgr.createFileIDForMemBuffer(SB);
if (MainFileID == 0) {
fprintf(stderr, "Error reading standard input! Empty?\n");
return 0;
}
}
// Now that we have emitted the predefined macros, #includes, etc into
// PrologMacros, preprocess it to populate the initial preprocessor state.
// Memory buffer must end with a null byte!
PrologMacros.push_back(0);
llvm::MemoryBuffer *SB =
llvm::MemoryBuffer::getMemBuffer(&PrologMacros.front(),&PrologMacros.back(),
"<predefines>");
assert(SB && "Cannot fail to create predefined source buffer");
unsigned FileID = SourceMgr.createFileIDForMemBuffer(SB);
assert(FileID && "Could not create FileID for predefines?");
// Start parsing the predefines.
PP.EnterSourceFile(FileID, 0);
// Lex the file, which will read all the macros.
Token Tok;
PP.Lex(Tok);
assert(Tok.getKind() == tok::eof && "Didn't read entire file!");
// Once we've read this, we're done.
return MainFileID;
}
/// ProcessInputFile - Process a single input file with the specified state.
///
static void ProcessInputFile(Preprocessor &PP, unsigned MainFileID,
const std::string &InFile,
SourceManager &SourceMgr,
TextDiagnostics &OurDiagnosticClient,
HeaderSearch &HeaderInfo,
const LangOptions &LangInfo) {
bool ClearSourceMgr = false;
switch (ProgAction) {
default:
fprintf(stderr, "Unexpected program action!\n");
return;
case DumpTokens: { // Token dump mode.
Token Tok;
// Start parsing the specified input file.
PP.EnterSourceFile(MainFileID, 0, true);
do {
PP.Lex(Tok);
PP.DumpToken(Tok, true);
fprintf(stderr, "\n");
} while (Tok.getKind() != tok::eof);
ClearSourceMgr = true;
break;
}
case RunPreprocessorOnly: { // Just lex as fast as we can, no output.
Token Tok;
// Start parsing the specified input file.
PP.EnterSourceFile(MainFileID, 0, true);
do {
PP.Lex(Tok);
} while (Tok.getKind() != tok::eof);
ClearSourceMgr = true;
break;
}
case PrintPreprocessedInput: // -E mode.
DoPrintPreprocessedInput(MainFileID, PP, LangInfo);
ClearSourceMgr = true;
break;
case ParseNoop: // -parse-noop
ParseFile(PP, new MinimalAction(), MainFileID);
ClearSourceMgr = true;
break;
case ParsePrintCallbacks:
ParseFile(PP, CreatePrintParserActionsAction(), MainFileID);
ClearSourceMgr = true;
break;
case ParseSyntaxOnly: // -fsyntax-only
case ParseAST:
BuildASTs(PP, MainFileID, Stats);
break;
case ParseASTPrint:
PrintASTs(PP, MainFileID, Stats);
break;
case ParseASTDump:
DumpASTs(PP, MainFileID, Stats);
break;
case ParseCFGDump:
DumpCFGs(PP, MainFileID, Stats);
break;
case ParseCFGView:
DumpCFGs(PP, MainFileID, Stats, true);
break;
case AnalysisLiveVariables:
AnalyzeLiveVariables(PP, MainFileID);
break;
case WarnDeadStores:
RunDeadStoresCheck(PP, MainFileID, Stats);
break;
case EmitLLVM:
EmitLLVMFromASTs(PP, MainFileID, Stats);
break;
case ParseASTCheck:
exit(CheckDiagnostics(PP, MainFileID));
break;
}
if (Stats) {
fprintf(stderr, "\nSTATISTICS FOR '%s':\n", InFile.c_str());
PP.PrintStats();
PP.getIdentifierTable().PrintStats();
HeaderInfo.PrintStats();
if (ClearSourceMgr)
SourceMgr.PrintStats();
fprintf(stderr, "\n");
}
// For a multi-file compilation, some things are ok with nuking the source
// manager tables, other require stable fileid/macroid's across multiple
// files.
if (ClearSourceMgr) {
SourceMgr.clearIDTables();
}
}
static llvm::cl::list<std::string>
InputFilenames(llvm::cl::Positional, llvm::cl::desc("<input files>"));
int main(int argc, char **argv) {
llvm::cl::ParseCommandLineOptions(argc, argv, " llvm cfe\n");
llvm::sys::PrintStackTraceOnErrorSignal();
// If no input was specified, read from stdin.
if (InputFilenames.empty())
InputFilenames.push_back("-");
/// Create a SourceManager object. This tracks and owns all the file buffers
/// allocated to the program.
SourceManager SourceMgr;
// Create a file manager object to provide access to and cache the filesystem.
FileManager FileMgr;
// Initialize language options, inferring file types from input filenames.
// FIXME: This infers info from the first file, we should clump by language
// to handle 'x.c y.c a.cpp b.cpp'.
LangOptions LangInfo;
InitializeBaseLanguage(LangInfo, InputFilenames[0]);
InitializeLanguageStandard(LangInfo);
std::auto_ptr<TextDiagnostics> DiagClient;
if (ProgAction != ParseASTCheck) {
// Print diagnostics to stderr by default.
DiagClient.reset(new TextDiagnosticPrinter(SourceMgr));
} else {
// When checking diagnostics, just buffer them up.
DiagClient.reset(new TextDiagnosticBuffer(SourceMgr));
if (InputFilenames.size() != 1) {
fprintf(stderr,
"parse-ast-check only works on single input files for now.\n");
return 1;
}
}
// Configure our handling of diagnostics.
Diagnostic Diags(*DiagClient);
InitializeDiagnostics(Diags);
// Get information about the targets being compiled for. Note that this
// pointer and the TargetInfoImpl objects are never deleted by this toy
// driver.
TargetInfo *Target = CreateTargetInfo(Diags);
if (Target == 0) {
fprintf(stderr,
"Sorry, don't know what target this is, please use -arch.\n");
exit(1);
}
// Process the -I options and set them in the HeaderInfo.
HeaderSearch HeaderInfo(FileMgr);
DiagClient->setHeaderSearch(HeaderInfo);
InitializeIncludePaths(HeaderInfo, FileMgr, Diags, LangInfo);
for (unsigned i = 0, e = InputFilenames.size(); i != e; ++i) {
// Set up the preprocessor with these options.
Preprocessor PP(Diags, LangInfo, *Target, SourceMgr, HeaderInfo);
DiagClient->setPreprocessor(PP);
const std::string &InFile = InputFilenames[i];
std::vector<char> PrologMacros;
unsigned MainFileID = InitializePreprocessor(PP, InFile, SourceMgr,
HeaderInfo, LangInfo,
PrologMacros);
if (!MainFileID) continue;
ProcessInputFile(PP, MainFileID, InFile, SourceMgr,
*DiagClient, HeaderInfo, LangInfo);
HeaderInfo.ClearFileInfo();
}
unsigned NumDiagnostics = Diags.getNumDiagnostics();
if (NumDiagnostics)
fprintf(stderr, "%d diagnostic%s generated.\n", NumDiagnostics,
(NumDiagnostics == 1 ? "" : "s"));
if (Stats) {
// Printed from high-to-low level.
SourceMgr.PrintStats();
FileMgr.PrintStats();
fprintf(stderr, "\n");
}
return Diags.getNumErrors() != 0;
}

View File

@@ -1,45 +0,0 @@
//===--- clang.h - C-Language Front-end -----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the header file that pulls together the top-level driver.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_CLANG_H
#define LLVM_CLANG_CLANG_H
namespace clang {
class Preprocessor;
struct LangOptions;
class MinimalAction;
class TargetInfo;
class Diagnostic;
/// DoPrintPreprocessedInput - Implement -E mode.
void DoPrintPreprocessedInput(unsigned MainFileID, Preprocessor &PP,
const LangOptions &Options);
/// CreatePrintParserActionsAction - Return the actions implementation that
/// implements the -parse-print-callbacks option.
MinimalAction *CreatePrintParserActionsAction();
/// CreateTargetInfo - Return the set of target info objects as specified by
/// the -arch command line option.
TargetInfo *CreateTargetInfo(Diagnostic &Diags);
/// EmitLLVMFromASTs - Implement -emit-llvm, which generates llvm IR from C.
void EmitLLVMFromASTs(Preprocessor &PP, unsigned MainFileID,
bool PrintStats);
/// CheckDiagnostics - Implement the -parse-ast-check diagnostic verifier.
bool CheckDiagnostics(Preprocessor &PP, unsigned MainFileID);
} // end namespace clang
#endif

View File

@@ -1,2 +0,0 @@
#import <Cocoa/Cocoa.h>

View File

@@ -1,4 +0,0 @@
#include <Carbon/Carbon.h>
//#import<vecLib/vecLib.h>

View File

@@ -1,5 +0,0 @@
// clang -I/usr/include/c++/4.0.0 -I/usr/include/c++/4.0.0/powerpc-apple-darwin8 -I/usr/include/c++/4.0.0/backward INPUTS/iostream.cc -Eonly
#include <iostream>
#include <stdint.h>

View File

@@ -1,17 +0,0 @@
// This pounds on macro expansion for performance reasons. This is currently
// heavily constrained by darwin's malloc.
// Function-like macros.
#define A0(A, B) A B
#define A1(A, B) A0(A,B) A0(A,B) A0(A,B) A0(A,B) A0(A,B) A0(A,B)
#define A2(A, B) A1(A,B) A1(A,B) A1(A,B) A1(A,B) A1(A,B) A1(A,B)
#define A3(A, B) A2(A,B) A2(A,B) A2(A,B) A2(A,B) A2(A,B) A2(A,B)
#define A4(A, B) A3(A,B) A3(A,B) A3(A,B) A3(A,B) A3(A,B) A3(A,B)
#define A5(A, B) A4(A,B) A4(A,B) A4(A,B) A4(A,B) A4(A,B) A4(A,B)
#define A6(A, B) A5(A,B) A5(A,B) A5(A,B) A5(A,B) A5(A,B) A5(A,B)
#define A7(A, B) A6(A,B) A6(A,B) A6(A,B) A6(A,B) A6(A,B) A6(A,B)
#define A8(A, B) A7(A,B) A7(A,B) A7(A,B) A7(A,B) A7(A,B) A7(A,B)
A8(a, b)

View File

@@ -1,16 +0,0 @@
// This pounds on macro expansion for performance reasons. This is currently
// heavily constrained by darwin's malloc.
// Object-like expansions
#define A0 a b
#define A1 A0 A0 A0 A0 A0 A0
#define A2 A1 A1 A1 A1 A1 A1
#define A3 A2 A2 A2 A2 A2 A2
#define A4 A3 A3 A3 A3 A3 A3
#define A5 A4 A4 A4 A4 A4 A4
#define A6 A5 A5 A5 A5 A5 A5
#define A7 A6 A6 A6 A6 A6 A6
#define A8 A7 A7 A7 A7 A7 A7
A8

View File

@@ -1,47 +0,0 @@
#define __extension__
#define __stpcpy(dest, src) (__extension__ (__builtin_constant_p (src) ? (__string2_1bptr_p (src) && strlen (src) + 1 <= 8 ? __stpcpy_small (dest, __stpcpy_args (src), strlen (src) + 1) : ((char *) __mempcpy (dest, src, strlen (src) + 1) - 1)) : __stpcpy (dest, src)))
#define stpcpy(dest, src) __stpcpy (dest, src)
#define __stpcpy_args(src) __extension__ __STRING2_SMALL_GET16 (src, 0), __extension__ __STRING2_SMALL_GET16 (src, 4), __extension__ __STRING2_SMALL_GET32 (src, 0), __extension__ __STRING2_SMALL_GET32 (src, 4)
#define __mempcpy(dest, src, n) (__extension__ (__builtin_constant_p (src) && __builtin_constant_p (n) && __string2_1bptr_p (src) && n <= 8 ? __mempcpy_small (dest, __mempcpy_args (src), n) : __mempcpy (dest, src, n)))
#define mempcpy(dest, src, n) __mempcpy (dest, src, n)
#define __mempcpy_args(src) ((char *) (src))[0], ((char *) (src))[2], ((char *) (src))[4], ((char *) (src))[6], __extension__ __STRING2_SMALL_GET16 (src, 0), __extension__ __STRING2_SMALL_GET16 (src, 4), __extension__ __STRING2_SMALL_GET32 (src, 0), __extension__ __STRING2_SMALL_GET32 (src, 4)
#define __STRING2_SMALL_GET16(src, idx) (((__const unsigned char *) (__const char *) (src))[idx + 1] << 8 | ((__const unsigned char *) (__const char *) (src))[idx])
#define __STRING2_SMALL_GET32(src, idx) (((((__const unsigned char *) (__const char *) (src))[idx + 3] << 8 | ((__const unsigned char *) (__const char *) (src))[idx + 2]) << 8 | ((__const unsigned char *) (__const char *) (src))[idx + 1]) << 8 | ((__const unsigned char *) (__const char *) (src))[idx])
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)
stpcpy (stpcpy (stpcpy (stpcpy (a, b), c), d), e)

View File

@@ -1,63 +0,0 @@
==============================================================================
LLVM Release License
==============================================================================
University of Illinois/NCSA
Open Source License
Copyright (c) 2007 University of Illinois at Urbana-Champaign.
All rights reserved.
Developed by:
LLVM Team
University of Illinois at Urbana-Champaign
http://llvm.org
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal with
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the
documentation and/or other materials provided with the distribution.
* Neither the names of the LLVM Team, University of Illinois at
Urbana-Champaign, nor the names of its contributors may be used to
endorse or promote products derived from this Software without specific
prior written permission.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
SOFTWARE.
==============================================================================
The LLVM software contains code written by third parties. Such software will
have its own individual LICENSE.TXT file in the directory in which it appears.
This file will describe the copyrights, license, and restrictions which apply
to that code.
The disclaimer of warranty in the University of Illinois Open Source License
applies to all code in the LLVM Distribution, and nothing in any of the
other licenses gives permission to use the names of the LLVM Team or the
University of Illinois to endorse or promote products derived from this
Software.
The following pieces of software have additional or alternate copyrights,
licenses, and/or restrictions:
Program Directory
------- ---------
<none yet>

View File

@@ -1,343 +0,0 @@
//===--- HeaderSearch.cpp - Resolve Header File Locations ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the DirectoryLookup and HeaderSearch interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/FileManager.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/IdentifierTable.h"
#include "llvm/System/Path.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;
HeaderSearch::HeaderSearch(FileManager &FM) : FileMgr(FM), FrameworkMap(64) {
SystemDirIdx = 0;
NoCurDirSearch = false;
NumIncluded = 0;
NumMultiIncludeFileOptzn = 0;
NumFrameworkLookups = NumSubFrameworkLookups = 0;
}
void HeaderSearch::PrintStats() {
fprintf(stderr, "\n*** HeaderSearch Stats:\n");
fprintf(stderr, "%d files tracked.\n", (int)FileInfo.size());
unsigned NumOnceOnlyFiles = 0, MaxNumIncludes = 0, NumSingleIncludedFiles = 0;
for (unsigned i = 0, e = FileInfo.size(); i != e; ++i) {
NumOnceOnlyFiles += FileInfo[i].isImport;
if (MaxNumIncludes < FileInfo[i].NumIncludes)
MaxNumIncludes = FileInfo[i].NumIncludes;
NumSingleIncludedFiles += FileInfo[i].NumIncludes == 1;
}
fprintf(stderr, " %d #import/#pragma once files.\n", NumOnceOnlyFiles);
fprintf(stderr, " %d included exactly once.\n", NumSingleIncludedFiles);
fprintf(stderr, " %d max times a file is included.\n", MaxNumIncludes);
fprintf(stderr, " %d #include/#include_next/#import.\n", NumIncluded);
fprintf(stderr, " %d #includes skipped due to"
" the multi-include optimization.\n", NumMultiIncludeFileOptzn);
fprintf(stderr, "%d framework lookups.\n", NumFrameworkLookups);
fprintf(stderr, "%d subframework lookups.\n", NumSubFrameworkLookups);
}
//===----------------------------------------------------------------------===//
// Header File Location.
//===----------------------------------------------------------------------===//
const FileEntry *HeaderSearch::DoFrameworkLookup(const DirectoryEntry *Dir,
const char *FilenameStart,
const char *FilenameEnd) {
// Framework names must have a '/' in the filename.
const char *SlashPos = std::find(FilenameStart, FilenameEnd, '/');
if (SlashPos == FilenameEnd) return 0;
llvm::StringMapEntry<const DirectoryEntry *> &CacheLookup =
FrameworkMap.GetOrCreateValue(FilenameStart, SlashPos);
// If it is some other directory, fail.
if (CacheLookup.getValue() && CacheLookup.getValue() != Dir)
return 0;
// FrameworkName = "/System/Library/Frameworks/"
llvm::SmallString<1024> FrameworkName;
FrameworkName += Dir->getName();
if (FrameworkName.empty() || FrameworkName.back() != '/')
FrameworkName.push_back('/');
// FrameworkName = "/System/Library/Frameworks/Cocoa"
FrameworkName.append(FilenameStart, SlashPos);
// FrameworkName = "/System/Library/Frameworks/Cocoa.framework/"
FrameworkName += ".framework/";
if (CacheLookup.getValue() == 0) {
++NumFrameworkLookups;
// If the framework dir doesn't exist, we fail.
if (!llvm::sys::Path(std::string(FrameworkName.begin(),
FrameworkName.end())).exists())
return 0;
// Otherwise, if it does, remember that this is the right direntry for this
// framework.
CacheLookup.setValue(Dir);
}
// Check "/System/Library/Frameworks/Cocoa.framework/Headers/file.h"
unsigned OrigSize = FrameworkName.size();
FrameworkName += "Headers/";
FrameworkName.append(SlashPos+1, FilenameEnd);
if (const FileEntry *FE = FileMgr.getFile(FrameworkName.begin(),
FrameworkName.end())) {
return FE;
}
// Check "/System/Library/Frameworks/Cocoa.framework/PrivateHeaders/file.h"
const char *Private = "Private";
FrameworkName.insert(FrameworkName.begin()+OrigSize, Private,
Private+strlen(Private));
return FileMgr.getFile(FrameworkName.begin(), FrameworkName.end());
}
/// LookupFile - Given a "foo" or <foo> reference, look up the indicated file,
/// return null on failure. isAngled indicates whether the file reference is
/// for system #include's or not (i.e. using <> instead of ""). CurFileEnt, if
/// non-null, indicates where the #including file is, in case a relative search
/// is needed.
const FileEntry *HeaderSearch::LookupFile(const char *FilenameStart,
const char *FilenameEnd,
bool isAngled,
const DirectoryLookup *FromDir,
const DirectoryLookup *&CurDir,
const FileEntry *CurFileEnt) {
// If 'Filename' is absolute, check to see if it exists and no searching.
// FIXME: Portability. This should be a sys::Path interface, this doesn't
// handle things like C:\foo.txt right, nor win32 \\network\device\blah.
if (FilenameStart[0] == '/') {
CurDir = 0;
// If this was an #include_next "/absolute/file", fail.
if (FromDir) return 0;
// Otherwise, just return the file.
return FileMgr.getFile(FilenameStart, FilenameEnd);
}
llvm::SmallString<1024> TmpDir;
// Step #0, unless disabled, check to see if the file is in the #includer's
// directory. This search is not done for <> headers.
if (CurFileEnt && !isAngled && !NoCurDirSearch) {
// Concatenate the requested file onto the directory.
// FIXME: Portability. Filename concatenation should be in sys::Path.
TmpDir += CurFileEnt->getDir()->getName();
TmpDir.push_back('/');
TmpDir.append(FilenameStart, FilenameEnd);
if (const FileEntry *FE = FileMgr.getFile(TmpDir.begin(), TmpDir.end())) {
// Leave CurDir unset.
// This file is a system header or C++ unfriendly if the old file is.
getFileInfo(FE).DirInfo = getFileInfo(CurFileEnt).DirInfo;
return FE;
}
TmpDir.clear();
}
CurDir = 0;
// If this is a system #include, ignore the user #include locs.
unsigned i = isAngled ? SystemDirIdx : 0;
// If this is a #include_next request, start searching after the directory the
// file was found in.
if (FromDir)
i = FromDir-&SearchDirs[0];
// Cache all of the lookups performed by this method. Many headers are
// multiply included, and the "pragma once" optimization prevents them from
// being relex/pp'd, but they would still have to search through a
// (potentially huge) series of SearchDirs to find it.
std::pair<unsigned, unsigned> &CacheLookup =
LookupFileCache.GetOrCreateValue(FilenameStart, FilenameEnd).getValue();
// If the entry has been previously looked up, the first value will be
// non-zero. If the value is equal to i (the start point of our search), then
// this is a matching hit.
if (CacheLookup.first == i+1) {
// Skip querying potentially lots of directories for this lookup.
i = CacheLookup.second;
} else {
// Otherwise, this is the first query, or the previous query didn't match
// our search start. We will fill in our found location below, so prime the
// start point value.
CacheLookup.first = i+1;
}
// Check each directory in sequence to see if it contains this file.
for (; i != SearchDirs.size(); ++i) {
const FileEntry *FE = 0;
if (!SearchDirs[i].isFramework()) {
// FIXME: Portability. Adding file to dir should be in sys::Path.
// Concatenate the requested file onto the directory.
TmpDir.clear();
TmpDir += SearchDirs[i].getDir()->getName();
TmpDir.push_back('/');
TmpDir.append(FilenameStart, FilenameEnd);
FE = FileMgr.getFile(TmpDir.begin(), TmpDir.end());
} else {
FE = DoFrameworkLookup(SearchDirs[i].getDir(), FilenameStart,FilenameEnd);
}
if (FE) {
CurDir = &SearchDirs[i];
// This file is a system header or C++ unfriendly if the dir is.
getFileInfo(FE).DirInfo = CurDir->getDirCharacteristic();
// Remember this location for the next lookup we do.
CacheLookup.second = i;
return FE;
}
}
// Otherwise, didn't find it. Remember we didn't find this.
CacheLookup.second = SearchDirs.size();
return 0;
}
/// LookupSubframeworkHeader - Look up a subframework for the specified
/// #include file. For example, if #include'ing <HIToolbox/HIToolbox.h> from
/// within ".../Carbon.framework/Headers/Carbon.h", check to see if HIToolbox
/// is a subframework within Carbon.framework. If so, return the FileEntry
/// for the designated file, otherwise return null.
const FileEntry *HeaderSearch::
LookupSubframeworkHeader(const char *FilenameStart,
const char *FilenameEnd,
const FileEntry *ContextFileEnt) {
// Framework names must have a '/' in the filename. Find it.
const char *SlashPos = std::find(FilenameStart, FilenameEnd, '/');
if (SlashPos == FilenameEnd) return 0;
// Look up the base framework name of the ContextFileEnt.
const char *ContextName = ContextFileEnt->getName();
// If the context info wasn't a framework, couldn't be a subframework.
const char *FrameworkPos = strstr(ContextName, ".framework/");
if (FrameworkPos == 0)
return 0;
llvm::SmallString<1024> FrameworkName(ContextName,
FrameworkPos+strlen(".framework/"));
// Append Frameworks/HIToolbox.framework/
FrameworkName += "Frameworks/";
FrameworkName.append(FilenameStart, SlashPos);
FrameworkName += ".framework/";
llvm::StringMapEntry<const DirectoryEntry *> &CacheLookup =
FrameworkMap.GetOrCreateValue(FilenameStart, SlashPos);
// Some other location?
if (CacheLookup.getValue() &&
CacheLookup.getKeyLength() == FrameworkName.size() &&
memcmp(CacheLookup.getKeyData(), &FrameworkName[0],
CacheLookup.getKeyLength()) != 0)
return 0;
// Cache subframework.
if (CacheLookup.getValue() == 0) {
++NumSubFrameworkLookups;
// If the framework dir doesn't exist, we fail.
const DirectoryEntry *Dir = FileMgr.getDirectory(FrameworkName.begin(),
FrameworkName.end());
if (Dir == 0) return 0;
// Otherwise, if it does, remember that this is the right direntry for this
// framework.
CacheLookup.setValue(Dir);
}
const FileEntry *FE = 0;
// Check ".../Frameworks/HIToolbox.framework/Headers/HIToolbox.h"
llvm::SmallString<1024> HeadersFilename(FrameworkName);
HeadersFilename += "Headers/";
HeadersFilename.append(SlashPos+1, FilenameEnd);
if (!(FE = FileMgr.getFile(HeadersFilename.begin(),
HeadersFilename.end()))) {
// Check ".../Frameworks/HIToolbox.framework/PrivateHeaders/HIToolbox.h"
HeadersFilename = FrameworkName;
HeadersFilename += "PrivateHeaders/";
HeadersFilename.append(SlashPos+1, FilenameEnd);
if (!(FE = FileMgr.getFile(HeadersFilename.begin(), HeadersFilename.end())))
return 0;
}
// This file is a system header or C++ unfriendly if the old file is.
getFileInfo(FE).DirInfo = getFileInfo(ContextFileEnt).DirInfo;
return FE;
}
//===----------------------------------------------------------------------===//
// File Info Management.
//===----------------------------------------------------------------------===//
/// getFileInfo - Return the PerFileInfo structure for the specified
/// FileEntry.
HeaderSearch::PerFileInfo &HeaderSearch::getFileInfo(const FileEntry *FE) {
if (FE->getUID() >= FileInfo.size())
FileInfo.resize(FE->getUID()+1);
return FileInfo[FE->getUID()];
}
/// ShouldEnterIncludeFile - Mark the specified file as a target of of a
/// #include, #include_next, or #import directive. Return false if #including
/// the file will have no effect or true if we should include it.
bool HeaderSearch::ShouldEnterIncludeFile(const FileEntry *File, bool isImport){
++NumIncluded; // Count # of attempted #includes.
// Get information about this file.
PerFileInfo &FileInfo = getFileInfo(File);
// If this is a #import directive, check that we have not already imported
// this header.
if (isImport) {
// If this has already been imported, don't import it again.
FileInfo.isImport = true;
// Has this already been #import'ed or #include'd?
if (FileInfo.NumIncludes) return false;
} else {
// Otherwise, if this is a #include of a file that was previously #import'd
// or if this is the second #include of a #pragma once file, ignore it.
if (FileInfo.isImport)
return false;
}
// Next, check to see if the file is wrapped with #ifndef guards. If so, and
// if the macro that guards it is defined, we know the #include has no effect.
if (FileInfo.ControllingMacro && FileInfo.ControllingMacro->getMacroInfo()) {
++NumMultiIncludeFileOptzn;
return false;
}
// Increment the number of times this file has been included.
++FileInfo.NumIncludes;
return true;
}

View File

@@ -1,211 +0,0 @@
//===--- IdentifierTable.cpp - Hash table for identifier lookup -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the IdentifierInfo, IdentifierVisitor, and
// IdentifierTable interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/IdentifierTable.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Basic/LangOptions.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Token Implementation
//===----------------------------------------------------------------------===//
/// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
return getKind() == tok::identifier &&
getIdentifierInfo()->getObjCKeywordID() == objcKey;
}
/// getObjCKeywordID - Return the ObjC keyword kind.
tok::ObjCKeywordKind Token::getObjCKeywordID() const {
IdentifierInfo *specId = getIdentifierInfo();
return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
}
//===----------------------------------------------------------------------===//
// IdentifierInfo Implementation
//===----------------------------------------------------------------------===//
IdentifierInfo::IdentifierInfo() {
Macro = 0;
TokenID = tok::identifier;
PPID = tok::pp_not_keyword;
ObjCID = tok::objc_not_keyword;
BuiltinID = 0;
IsExtension = false;
IsPoisoned = false;
IsOtherTargetMacro = false;
IsCPPOperatorKeyword = false;
IsNonPortableBuiltin = false;
FETokenInfo = 0;
}
IdentifierInfo::~IdentifierInfo() {
delete Macro;
}
//===----------------------------------------------------------------------===//
// IdentifierTable Implementation
//===----------------------------------------------------------------------===//
IdentifierTable::IdentifierTable(const LangOptions &LangOpts)
// Start with space for 8K identifiers.
: HashTable(8192) {
// Populate the identifier table with info about keywords for the current
// language.
AddKeywords(LangOpts);
}
//===----------------------------------------------------------------------===//
// Language Keyword Implementation
//===----------------------------------------------------------------------===//
/// AddKeyword - This method is used to associate a token ID with specific
/// identifiers because they are language keywords. This causes the lexer to
/// automatically map matching identifiers to specialized token codes.
///
/// The C90/C99/CPP/CPP0x flags are set to 0 if the token should be
/// enabled in the specified langauge, set to 1 if it is an extension
/// in the specified language, and set to 2 if disabled in the
/// specified language.
static void AddKeyword(const char *Keyword, unsigned KWLen,
tok::TokenKind TokenCode,
int C90, int C99, int CXX, int CXX0x,
const LangOptions &LangOpts, IdentifierTable &Table) {
int Flags = LangOpts.CPlusPlus ? (LangOpts.CPlusPlus0x? CXX0x : CXX)
: (LangOpts.C99 ? C99 : C90);
// Don't add this keyword if disabled in this language or if an extension
// and extensions are disabled.
if (Flags + LangOpts.NoExtensions >= 2) return;
IdentifierInfo &Info = Table.get(Keyword, Keyword+KWLen);
Info.setTokenID(TokenCode);
Info.setIsExtensionToken(Flags == 1);
}
static void AddAlias(const char *Keyword, unsigned KWLen,
const char *AliaseeKeyword, unsigned AliaseeKWLen,
const LangOptions &LangOpts, IdentifierTable &Table) {
IdentifierInfo &AliasInfo = Table.get(Keyword, Keyword+KWLen);
IdentifierInfo &AliaseeInfo = Table.get(AliaseeKeyword,
AliaseeKeyword+AliaseeKWLen);
AliasInfo.setTokenID(AliaseeInfo.getTokenID());
AliasInfo.setIsExtensionToken(AliaseeInfo.isExtensionToken());
}
/// AddPPKeyword - Register a preprocessor keyword like "define" "undef" or
/// "elif".
static void AddPPKeyword(tok::PPKeywordKind PPID,
const char *Name, unsigned NameLen,
IdentifierTable &Table) {
Table.get(Name, Name+NameLen).setPPKeywordID(PPID);
}
/// AddCXXOperatorKeyword - Register a C++ operator keyword alternative
/// representations.
static void AddCXXOperatorKeyword(const char *Keyword, unsigned KWLen,
tok::TokenKind TokenCode,
IdentifierTable &Table) {
IdentifierInfo &Info = Table.get(Keyword, Keyword + KWLen);
Info.setTokenID(TokenCode);
Info.setIsCPlusplusOperatorKeyword();
}
/// AddObjCKeyword - Register an Objective-C @keyword like "class" "selector" or
/// "property".
static void AddObjCKeyword(tok::ObjCKeywordKind ObjCID,
const char *Name, unsigned NameLen,
IdentifierTable &Table) {
Table.get(Name, Name+NameLen).setObjCKeywordID(ObjCID);
}
/// AddKeywords - Add all keywords to the symbol table.
///
void IdentifierTable::AddKeywords(const LangOptions &LangOpts) {
enum {
C90Shift = 0,
EXTC90 = 1 << C90Shift,
NOTC90 = 2 << C90Shift,
C99Shift = 2,
EXTC99 = 1 << C99Shift,
NOTC99 = 2 << C99Shift,
CPPShift = 4,
EXTCPP = 1 << CPPShift,
NOTCPP = 2 << CPPShift,
CPP0xShift = 6,
EXTCPP0x = 1 << CPP0xShift,
NOTCPP0x = 2 << CPP0xShift,
Mask = 3
};
// Add keywords and tokens for the current language.
#define KEYWORD(NAME, FLAGS) \
AddKeyword(#NAME, strlen(#NAME), tok::kw_ ## NAME, \
((FLAGS) >> C90Shift) & Mask, \
((FLAGS) >> C99Shift) & Mask, \
((FLAGS) >> CPPShift) & Mask, \
((FLAGS) >> CPP0xShift) & Mask, LangOpts, *this);
#define ALIAS(NAME, TOK) \
AddAlias(NAME, strlen(NAME), #TOK, strlen(#TOK), LangOpts, *this);
#define PPKEYWORD(NAME) \
AddPPKeyword(tok::pp_##NAME, #NAME, strlen(#NAME), *this);
#define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \
if (LangOpts.CXXOperatorNames) \
AddCXXOperatorKeyword(#NAME, strlen(#NAME), tok::ALIAS, *this);
#define OBJC1_AT_KEYWORD(NAME) \
if (LangOpts.ObjC1) \
AddObjCKeyword(tok::objc_##NAME, #NAME, strlen(#NAME), *this);
#define OBJC2_AT_KEYWORD(NAME) \
if (LangOpts.ObjC2) \
AddObjCKeyword(tok::objc_##NAME, #NAME, strlen(#NAME), *this);
#include "clang/Basic/TokenKinds.def"
}
//===----------------------------------------------------------------------===//
// Stats Implementation
//===----------------------------------------------------------------------===//
/// PrintStats - Print statistics about how well the identifier table is doing
/// at hashing identifiers.
void IdentifierTable::PrintStats() const {
unsigned NumBuckets = HashTable.getNumBuckets();
unsigned NumIdentifiers = HashTable.getNumItems();
unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers;
unsigned AverageIdentifierSize = 0;
unsigned MaxIdentifierLength = 0;
// TODO: Figure out maximum times an identifier had to probe for -stats.
for (llvm::StringMap<IdentifierInfo, llvm::BumpPtrAllocator>::const_iterator
I = HashTable.begin(), E = HashTable.end(); I != E; ++I) {
unsigned IdLen = I->getKeyLength();
AverageIdentifierSize += IdLen;
if (MaxIdentifierLength < IdLen)
MaxIdentifierLength = IdLen;
}
fprintf(stderr, "\n*** Identifier Table Stats:\n");
fprintf(stderr, "# Identifiers: %d\n", NumIdentifiers);
fprintf(stderr, "# Empty Buckets: %d\n", NumEmptyBuckets);
fprintf(stderr, "Hash density (#identifiers per bucket): %f\n",
NumIdentifiers/(double)NumBuckets);
fprintf(stderr, "Ave identifier length: %f\n",
(AverageIdentifierSize/(double)NumIdentifiers));
fprintf(stderr, "Max identifier length: %d\n", MaxIdentifierLength);
// Compute statistics about the memory allocated for identifiers.
HashTable.getAllocator().PrintStats();
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,661 +0,0 @@
//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Steve Naroff and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the NumericLiteralParser, CharLiteralParser, and
// StringLiteralParser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
/// not valid.
static int HexDigitValue(char C) {
if (C >= '0' && C <= '9') return C-'0';
if (C >= 'a' && C <= 'f') return C-'a'+10;
if (C >= 'A' && C <= 'F') return C-'A'+10;
return -1;
}
/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
/// either a character or a string literal.
static unsigned ProcessCharEscape(const char *&ThisTokBuf,
const char *ThisTokEnd, bool &HadError,
SourceLocation Loc, bool IsWide,
Preprocessor &PP) {
// Skip the '\' char.
++ThisTokBuf;
// We know that this character can't be off the end of the buffer, because
// that would have been \", which would not have been the end of string.
unsigned ResultChar = *ThisTokBuf++;
switch (ResultChar) {
// These map to themselves.
case '\\': case '\'': case '"': case '?': break;
// These have fixed mappings.
case 'a':
// TODO: K&R: the meaning of '\\a' is different in traditional C
ResultChar = 7;
break;
case 'b':
ResultChar = 8;
break;
case 'e':
PP.Diag(Loc, diag::ext_nonstandard_escape, "e");
ResultChar = 27;
break;
case 'f':
ResultChar = 12;
break;
case 'n':
ResultChar = 10;
break;
case 'r':
ResultChar = 13;
break;
case 't':
ResultChar = 9;
break;
case 'v':
ResultChar = 11;
break;
//case 'u': case 'U': // FIXME: UCNs.
case 'x': { // Hex escape.
ResultChar = 0;
if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
PP.Diag(Loc, diag::err_hex_escape_no_digits);
HadError = 1;
break;
}
// Hex escapes are a maximal series of hex digits.
bool Overflow = false;
for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
int CharVal = HexDigitValue(ThisTokBuf[0]);
if (CharVal == -1) break;
Overflow |= (ResultChar & 0xF0000000) ? true : false; // About to shift out a digit?
ResultChar <<= 4;
ResultChar |= CharVal;
}
// See if any bits will be truncated when evaluated as a character.
unsigned CharWidth = IsWide ? PP.getTargetInfo().getWCharWidth(Loc)
: PP.getTargetInfo().getCharWidth(Loc);
if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
Overflow = true;
ResultChar &= ~0U >> (32-CharWidth);
}
// Check for overflow.
if (Overflow) // Too many digits to fit in
PP.Diag(Loc, diag::warn_hex_escape_too_large);
break;
}
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7': {
// Octal escapes.
--ThisTokBuf;
ResultChar = 0;
// Octal escapes are a series of octal digits with maximum length 3.
// "\0123" is a two digit sequence equal to "\012" "3".
unsigned NumDigits = 0;
do {
ResultChar <<= 3;
ResultChar |= *ThisTokBuf++ - '0';
++NumDigits;
} while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
// Check for overflow. Reject '\777', but not L'\777'.
unsigned CharWidth = IsWide ? PP.getTargetInfo().getWCharWidth(Loc)
: PP.getTargetInfo().getCharWidth(Loc);
if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
PP.Diag(Loc, diag::warn_octal_escape_too_large);
ResultChar &= ~0U >> (32-CharWidth);
}
break;
}
// Otherwise, these are not valid escapes.
case '(': case '{': case '[': case '%':
// GCC accepts these as extensions. We warn about them as such though.
if (!PP.getLangOptions().NoExtensions) {
PP.Diag(Loc, diag::ext_nonstandard_escape,
std::string()+(char)ResultChar);
break;
}
// FALL THROUGH.
default:
if (isgraph(ThisTokBuf[0])) {
PP.Diag(Loc, diag::ext_unknown_escape, std::string()+(char)ResultChar);
} else {
PP.Diag(Loc, diag::ext_unknown_escape, "x"+llvm::utohexstr(ResultChar));
}
break;
}
return ResultChar;
}
/// integer-constant: [C99 6.4.4.1]
/// decimal-constant integer-suffix
/// octal-constant integer-suffix
/// hexadecimal-constant integer-suffix
/// decimal-constant:
/// nonzero-digit
/// decimal-constant digit
/// octal-constant:
/// 0
/// octal-constant octal-digit
/// hexadecimal-constant:
/// hexadecimal-prefix hexadecimal-digit
/// hexadecimal-constant hexadecimal-digit
/// hexadecimal-prefix: one of
/// 0x 0X
/// integer-suffix:
/// unsigned-suffix [long-suffix]
/// unsigned-suffix [long-long-suffix]
/// long-suffix [unsigned-suffix]
/// long-long-suffix [unsigned-sufix]
/// nonzero-digit:
/// 1 2 3 4 5 6 7 8 9
/// octal-digit:
/// 0 1 2 3 4 5 6 7
/// hexadecimal-digit:
/// 0 1 2 3 4 5 6 7 8 9
/// a b c d e f
/// A B C D E F
/// unsigned-suffix: one of
/// u U
/// long-suffix: one of
/// l L
/// long-long-suffix: one of
/// ll LL
///
/// floating-constant: [C99 6.4.4.2]
/// TODO: add rules...
///
NumericLiteralParser::
NumericLiteralParser(const char *begin, const char *end,
SourceLocation TokLoc, Preprocessor &pp)
: PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
s = DigitsBegin = begin;
saw_exponent = false;
saw_period = false;
isLong = false;
isUnsigned = false;
isLongLong = false;
isFloat = false;
isImaginary = false;
hadError = false;
if (*s == '0') { // parse radix
s++;
if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
s++;
radix = 16;
DigitsBegin = s;
s = SkipHexDigits(s);
if (s == ThisTokEnd) {
// Done.
} else if (*s == '.') {
s++;
saw_period = true;
s = SkipHexDigits(s);
}
// A binary exponent can appear with or with a '.'. If dotted, the
// binary exponent is required.
if (*s == 'p' || *s == 'P') {
s++;
saw_exponent = true;
if (*s == '+' || *s == '-') s++; // sign
const char *first_non_digit = SkipDigits(s);
if (first_non_digit == s) {
Diag(TokLoc, diag::err_exponent_has_no_digits);
return;
} else {
s = first_non_digit;
}
} else if (saw_period) {
Diag(TokLoc, diag::err_hexconstant_requires_exponent);
return;
}
} else if (*s == 'b' || *s == 'B') {
// 0b101010 is a GCC extension.
++s;
radix = 2;
DigitsBegin = s;
s = SkipBinaryDigits(s);
if (s == ThisTokEnd) {
// Done.
} else if (isxdigit(*s)) {
Diag(TokLoc, diag::err_invalid_binary_digit, std::string(s, s+1));
return;
}
PP.Diag(TokLoc, diag::ext_binary_literal);
} else {
// For now, the radix is set to 8. If we discover that we have a
// floating point constant, the radix will change to 10. Octal floating
// point constants are not permitted (only decimal and hexadecimal).
radix = 8;
DigitsBegin = s;
s = SkipOctalDigits(s);
if (s == ThisTokEnd) {
// Done.
} else if (isxdigit(*s)) {
TokLoc = PP.AdvanceToTokenCharacter(TokLoc, s-begin);
Diag(TokLoc, diag::err_invalid_octal_digit, std::string(s, s+1));
return;
} else if (*s == '.') {
s++;
radix = 10;
saw_period = true;
s = SkipDigits(s);
}
if (*s == 'e' || *s == 'E') { // exponent
s++;
radix = 10;
saw_exponent = true;
if (*s == '+' || *s == '-') s++; // sign
const char *first_non_digit = SkipDigits(s);
if (first_non_digit == s) {
Diag(TokLoc, diag::err_exponent_has_no_digits);
return;
} else {
s = first_non_digit;
}
}
}
} else { // the first digit is non-zero
radix = 10;
s = SkipDigits(s);
if (s == ThisTokEnd) {
// Done.
} else if (isxdigit(*s)) {
Diag(TokLoc, diag::err_invalid_decimal_digit, std::string(s, s+1));
return;
} else if (*s == '.') {
s++;
saw_period = true;
s = SkipDigits(s);
}
if (*s == 'e' || *s == 'E') { // exponent
s++;
saw_exponent = true;
if (*s == '+' || *s == '-') s++; // sign
const char *first_non_digit = SkipDigits(s);
if (first_non_digit == s) {
Diag(TokLoc, diag::err_exponent_has_no_digits);
return;
} else {
s = first_non_digit;
}
}
}
SuffixBegin = s;
// Parse the suffix. At this point we can classify whether we have an FP or
// integer constant.
bool isFPConstant = isFloatingLiteral();
// Loop over all of the characters of the suffix. If we see something bad,
// we break out of the loop.
for (; s != ThisTokEnd; ++s) {
switch (*s) {
case 'f': // FP Suffix for "float"
case 'F':
if (!isFPConstant) break; // Error for integer constant.
if (isFloat || isLong) break; // FF, LF invalid.
isFloat = true;
continue; // Success.
case 'u':
case 'U':
if (isFPConstant) break; // Error for floating constant.
if (isUnsigned) break; // Cannot be repeated.
isUnsigned = true;
continue; // Success.
case 'l':
case 'L':
if (isLong || isLongLong) break; // Cannot be repeated.
if (isFloat) break; // LF invalid.
// Check for long long. The L's need to be adjacent and the same case.
if (s+1 != ThisTokEnd && s[1] == s[0]) {
if (isFPConstant) break; // long long invalid for floats.
isLongLong = true;
++s; // Eat both of them.
} else {
isLong = true;
}
continue; // Success.
case 'i':
case 'I':
case 'j':
case 'J':
if (isImaginary) break; // Cannot be repeated.
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
diag::ext_imaginary_constant);
isImaginary = true;
continue; // Success.
}
// If we reached here, there was an error.
break;
}
// Report an error if there are any.
if (s != ThisTokEnd) {
TokLoc = PP.AdvanceToTokenCharacter(TokLoc, s-begin);
Diag(TokLoc, isFPConstant ? diag::err_invalid_suffix_float_constant :
diag::err_invalid_suffix_integer_constant,
std::string(SuffixBegin, ThisTokEnd));
return;
}
}
/// GetIntegerValue - Convert this numeric literal value to an APInt that
/// matches Val's input width. If there is an overflow, set Val to the low bits
/// of the result and return true. Otherwise, return false.
bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
Val = 0;
s = DigitsBegin;
llvm::APInt RadixVal(Val.getBitWidth(), radix);
llvm::APInt CharVal(Val.getBitWidth(), 0);
llvm::APInt OldVal = Val;
bool OverflowOccurred = false;
while (s < SuffixBegin) {
unsigned C = HexDigitValue(*s++);
// If this letter is out of bound for this radix, reject it.
assert(C < radix && "NumericLiteralParser ctor should have rejected this");
CharVal = C;
// Add the digit to the value in the appropriate radix. If adding in digits
// made the value smaller, then this overflowed.
OldVal = Val;
// Multiply by radix, did overflow occur on the multiply?
Val *= RadixVal;
OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
OldVal = Val;
// Add value, did overflow occur on the value?
Val += CharVal;
OverflowOccurred |= Val.ult(OldVal);
OverflowOccurred |= Val.ult(CharVal);
}
return OverflowOccurred;
}
// GetFloatValue - Poor man's floatvalue (FIXME).
float NumericLiteralParser::GetFloatValue() {
char floatChars[256];
strncpy(floatChars, ThisTokBegin, ThisTokEnd-ThisTokBegin);
floatChars[ThisTokEnd-ThisTokBegin] = '\0';
return (float)strtod(floatChars, 0);
}
void NumericLiteralParser::Diag(SourceLocation Loc, unsigned DiagID,
const std::string &M) {
PP.Diag(Loc, DiagID, M);
hadError = true;
}
CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
SourceLocation Loc, Preprocessor &PP) {
// At this point we know that the character matches the regex "L?'.*'".
HadError = false;
Value = 0;
// Determine if this is a wide character.
IsWide = begin[0] == 'L';
if (IsWide) ++begin;
// Skip over the entry quote.
assert(begin[0] == '\'' && "Invalid token lexed");
++begin;
// FIXME: This assumes that 'int' is 32-bits in overflow calculation, and the
// size of "value".
assert(PP.getTargetInfo().getIntWidth(Loc) == 32 &&
"Assumes sizeof(int) == 4 for now");
// FIXME: This assumes that wchar_t is 32-bits for now.
assert(PP.getTargetInfo().getWCharWidth(Loc) == 32 &&
"Assumes sizeof(wchar_t) == 4 for now");
// FIXME: This extensively assumes that 'char' is 8-bits.
assert(PP.getTargetInfo().getCharWidth(Loc) == 8 &&
"Assumes char is 8 bits");
bool isFirstChar = true;
bool isMultiChar = false;
while (begin[0] != '\'') {
unsigned ResultChar;
if (begin[0] != '\\') // If this is a normal character, consume it.
ResultChar = *begin++;
else // Otherwise, this is an escape character.
ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP);
// If this is a multi-character constant (e.g. 'abc'), handle it. These are
// implementation defined (C99 6.4.4.4p10).
if (!isFirstChar) {
// If this is the second character being processed, do special handling.
if (!isMultiChar) {
isMultiChar = true;
// Warn about discarding the top bits for multi-char wide-character
// constants (L'abcd').
if (IsWide)
PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
}
if (IsWide) {
// Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
Value = 0;
} else {
// Narrow character literals act as though their value is concatenated
// in this implementation.
if (((Value << 8) >> 8) != Value)
PP.Diag(Loc, diag::warn_char_constant_too_large);
Value <<= 8;
}
}
Value += ResultChar;
isFirstChar = false;
}
// If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
// if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
// character constants are not sign extended in the this implementation:
// '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
if (!IsWide && !isMultiChar && (Value & 128) &&
PP.getTargetInfo().isCharSigned(Loc))
Value = (signed char)Value;
}
/// string-literal: [C99 6.4.5]
/// " [s-char-sequence] "
/// L" [s-char-sequence] "
/// s-char-sequence:
/// s-char
/// s-char-sequence s-char
/// s-char:
/// any source character except the double quote ",
/// backslash \, or newline character
/// escape-character
/// universal-character-name
/// escape-character: [C99 6.4.4.4]
/// \ escape-code
/// universal-character-name
/// escape-code:
/// character-escape-code
/// octal-escape-code
/// hex-escape-code
/// character-escape-code: one of
/// n t b r f v a
/// \ ' " ?
/// octal-escape-code:
/// octal-digit
/// octal-digit octal-digit
/// octal-digit octal-digit octal-digit
/// hex-escape-code:
/// x hex-digit
/// hex-escape-code hex-digit
/// universal-character-name:
/// \u hex-quad
/// \U hex-quad hex-quad
/// hex-quad:
/// hex-digit hex-digit hex-digit hex-digit
///
StringLiteralParser::
StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
Preprocessor &pp, TargetInfo &t)
: PP(pp), Target(t) {
// Scan all of the string portions, remember the max individual token length,
// computing a bound on the concatenated string length, and see whether any
// piece is a wide-string. If any of the string portions is a wide-string
// literal, the result is a wide-string literal [C99 6.4.5p4].
MaxTokenLength = StringToks[0].getLength();
SizeBound = StringToks[0].getLength()-2; // -2 for "".
AnyWide = StringToks[0].getKind() == tok::wide_string_literal;
hadError = false;
// Implement Translation Phase #6: concatenation of string literals
/// (C99 5.1.1.2p1). The common case is only one string fragment.
for (unsigned i = 1; i != NumStringToks; ++i) {
// The string could be shorter than this if it needs cleaning, but this is a
// reasonable bound, which is all we need.
SizeBound += StringToks[i].getLength()-2; // -2 for "".
// Remember maximum string piece length.
if (StringToks[i].getLength() > MaxTokenLength)
MaxTokenLength = StringToks[i].getLength();
// Remember if we see any wide strings.
AnyWide |= StringToks[i].getKind() == tok::wide_string_literal;
}
// Include space for the null terminator.
++SizeBound;
// TODO: K&R warning: "traditional C rejects string constant concatenation"
// Get the width in bytes of wchar_t. If no wchar_t strings are used, do not
// query the target. As such, wchar_tByteWidth is only valid if AnyWide=true.
wchar_tByteWidth = ~0U;
if (AnyWide) {
wchar_tByteWidth = Target.getWCharWidth(StringToks[0].getLocation());
assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
wchar_tByteWidth /= 8;
}
// The output buffer size needs to be large enough to hold wide characters.
// This is a worst-case assumption which basically corresponds to L"" "long".
if (AnyWide)
SizeBound *= wchar_tByteWidth;
// Size the temporary buffer to hold the result string data.
ResultBuf.resize(SizeBound);
// Likewise, but for each string piece.
llvm::SmallString<512> TokenBuf;
TokenBuf.resize(MaxTokenLength);
// Loop over all the strings, getting their spelling, and expanding them to
// wide strings as appropriate.
ResultPtr = &ResultBuf[0]; // Next byte to fill in.
for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
const char *ThisTokBuf = &TokenBuf[0];
// Get the spelling of the token, which eliminates trigraphs, etc. We know
// that ThisTokBuf points to a buffer that is big enough for the whole token
// and 'spelled' tokens can only shrink.
unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1; // Skip end quote.
// TODO: Input character set mapping support.
// Skip L marker for wide strings.
bool ThisIsWide = false;
if (ThisTokBuf[0] == 'L') {
++ThisTokBuf;
ThisIsWide = true;
}
assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
++ThisTokBuf;
while (ThisTokBuf != ThisTokEnd) {
// Is this a span of non-escape characters?
if (ThisTokBuf[0] != '\\') {
const char *InStart = ThisTokBuf;
do {
++ThisTokBuf;
} while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
// Copy the character span over.
unsigned Len = ThisTokBuf-InStart;
if (!AnyWide) {
memcpy(ResultPtr, InStart, Len);
ResultPtr += Len;
} else {
// Note: our internal rep of wide char tokens is always little-endian.
for (; Len; --Len, ++InStart) {
*ResultPtr++ = InStart[0];
// Add zeros at the end.
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = 0;
}
}
continue;
}
// Otherwise, this is an escape character. Process it.
unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
StringToks[i].getLocation(),
ThisIsWide, PP);
// Note: our internal rep of wide char tokens is always little-endian.
*ResultPtr++ = ResultChar & 0xFF;
if (AnyWide) {
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = ResultChar >> i*8;
}
}
}
// Add zero terminator.
*ResultPtr = 0;
if (AnyWide) {
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = 0;
}
}

View File

@@ -1,647 +0,0 @@
//===--- MacroExpander.cpp - Lex from a macro expansion -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MacroExpander interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/MacroExpander.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// MacroArgs Implementation
//===----------------------------------------------------------------------===//
/// MacroArgs ctor function - This destroys the vector passed in.
MacroArgs *MacroArgs::create(const MacroInfo *MI,
const Token *UnexpArgTokens,
unsigned NumToks, bool VarargsElided) {
assert(MI->isFunctionLike() &&
"Can't have args for an object-like macro!");
// Allocate memory for the MacroArgs object with the lexer tokens at the end.
MacroArgs *Result = (MacroArgs*)malloc(sizeof(MacroArgs) +
NumToks*sizeof(Token));
// Construct the macroargs object.
new (Result) MacroArgs(NumToks, VarargsElided);
// Copy the actual unexpanded tokens to immediately after the result ptr.
if (NumToks)
memcpy(const_cast<Token*>(Result->getUnexpArgument(0)),
UnexpArgTokens, NumToks*sizeof(Token));
return Result;
}
/// destroy - Destroy and deallocate the memory for this object.
///
void MacroArgs::destroy() {
// Run the dtor to deallocate the vectors.
this->~MacroArgs();
// Release the memory for the object.
free(this);
}
/// getArgLength - Given a pointer to an expanded or unexpanded argument,
/// return the number of tokens, not counting the EOF, that make up the
/// argument.
unsigned MacroArgs::getArgLength(const Token *ArgPtr) {
unsigned NumArgTokens = 0;
for (; ArgPtr->getKind() != tok::eof; ++ArgPtr)
++NumArgTokens;
return NumArgTokens;
}
/// getUnexpArgument - Return the unexpanded tokens for the specified formal.
///
const Token *MacroArgs::getUnexpArgument(unsigned Arg) const {
// The unexpanded argument tokens start immediately after the MacroArgs object
// in memory.
const Token *Start = (const Token *)(this+1);
const Token *Result = Start;
// Scan to find Arg.
for (; Arg; ++Result) {
assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
if (Result->getKind() == tok::eof)
--Arg;
}
return Result;
}
/// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
/// by pre-expansion, return false. Otherwise, conservatively return true.
bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok) const {
// If there are no identifiers in the argument list, or if the identifiers are
// known to not be macros, pre-expansion won't modify it.
for (; ArgTok->getKind() != tok::eof; ++ArgTok)
if (IdentifierInfo *II = ArgTok->getIdentifierInfo()) {
if (II->getMacroInfo() && II->getMacroInfo()->isEnabled())
// Return true even though the macro could be a function-like macro
// without a following '(' token.
return true;
}
return false;
}
/// getPreExpArgument - Return the pre-expanded form of the specified
/// argument.
const std::vector<Token> &
MacroArgs::getPreExpArgument(unsigned Arg, Preprocessor &PP) {
assert(Arg < NumUnexpArgTokens && "Invalid argument number!");
// If we have already computed this, return it.
if (PreExpArgTokens.empty())
PreExpArgTokens.resize(NumUnexpArgTokens);
std::vector<Token> &Result = PreExpArgTokens[Arg];
if (!Result.empty()) return Result;
const Token *AT = getUnexpArgument(Arg);
unsigned NumToks = getArgLength(AT)+1; // Include the EOF.
// Otherwise, we have to pre-expand this argument, populating Result. To do
// this, we set up a fake MacroExpander to lex from the unexpanded argument
// list. With this installed, we lex expanded tokens until we hit the EOF
// token at the end of the unexp list.
PP.EnterTokenStream(AT, NumToks);
// Lex all of the macro-expanded tokens into Result.
do {
Result.push_back(Token());
PP.Lex(Result.back());
} while (Result.back().getKind() != tok::eof);
// Pop the token stream off the top of the stack. We know that the internal
// pointer inside of it is to the "end" of the token stream, but the stack
// will not otherwise be popped until the next token is lexed. The problem is
// that the token may be lexed sometime after the vector of tokens itself is
// destroyed, which would be badness.
PP.RemoveTopOfLexerStack();
return Result;
}
/// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
/// tokens into the literal string token that should be produced by the C #
/// preprocessor operator.
///
static Token StringifyArgument(const Token *ArgToks,
Preprocessor &PP, bool Charify = false) {
Token Tok;
Tok.startToken();
Tok.setKind(tok::string_literal);
const Token *ArgTokStart = ArgToks;
// Stringify all the tokens.
std::string Result = "\"";
// FIXME: Optimize this loop to not use std::strings.
bool isFirst = true;
for (; ArgToks->getKind() != tok::eof; ++ArgToks) {
const Token &Tok = *ArgToks;
if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()))
Result += ' ';
isFirst = false;
// If this is a string or character constant, escape the token as specified
// by 6.10.3.2p2.
if (Tok.getKind() == tok::string_literal || // "foo"
Tok.getKind() == tok::wide_string_literal || // L"foo"
Tok.getKind() == tok::char_constant) { // 'x' and L'x'.
Result += Lexer::Stringify(PP.getSpelling(Tok));
} else {
// Otherwise, just append the token.
Result += PP.getSpelling(Tok);
}
}
// If the last character of the string is a \, and if it isn't escaped, this
// is an invalid string literal, diagnose it as specified in C99.
if (Result[Result.size()-1] == '\\') {
// Count the number of consequtive \ characters. If even, then they are
// just escaped backslashes, otherwise it's an error.
unsigned FirstNonSlash = Result.size()-2;
// Guaranteed to find the starting " if nothing else.
while (Result[FirstNonSlash] == '\\')
--FirstNonSlash;
if ((Result.size()-1-FirstNonSlash) & 1) {
// Diagnose errors for things like: #define F(X) #X / F(\)
PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal);
Result.erase(Result.end()-1); // remove one of the \'s.
}
}
Result += '"';
// If this is the charify operation and the result is not a legal character
// constant, diagnose it.
if (Charify) {
// First step, turn double quotes into single quotes:
Result[0] = '\'';
Result[Result.size()-1] = '\'';
// Check for bogus character.
bool isBad = false;
if (Result.size() == 3) {
isBad = Result[1] == '\''; // ''' is not legal. '\' already fixed above.
} else {
isBad = (Result.size() != 4 || Result[1] != '\\'); // Not '\x'
}
if (isBad) {
PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify);
Result = "' '"; // Use something arbitrary, but legal.
}
}
Tok.setLength(Result.size());
Tok.setLocation(PP.CreateString(&Result[0], Result.size()));
return Tok;
}
/// getStringifiedArgument - Compute, cache, and return the specified argument
/// that has been 'stringified' as required by the # operator.
const Token &MacroArgs::getStringifiedArgument(unsigned ArgNo,
Preprocessor &PP) {
assert(ArgNo < NumUnexpArgTokens && "Invalid argument number!");
if (StringifiedArgs.empty()) {
StringifiedArgs.resize(getNumArguments());
memset(&StringifiedArgs[0], 0,
sizeof(StringifiedArgs[0])*getNumArguments());
}
if (StringifiedArgs[ArgNo].getKind() != tok::string_literal)
StringifiedArgs[ArgNo] = StringifyArgument(getUnexpArgument(ArgNo), PP);
return StringifiedArgs[ArgNo];
}
//===----------------------------------------------------------------------===//
// MacroExpander Implementation
//===----------------------------------------------------------------------===//
/// Create a macro expander for the specified macro with the specified actual
/// arguments. Note that this ctor takes ownership of the ActualArgs pointer.
void MacroExpander::Init(Token &Tok, MacroArgs *Actuals) {
// If the client is reusing a macro expander, make sure to free any memory
// associated with it.
destroy();
Macro = Tok.getIdentifierInfo()->getMacroInfo();
ActualArgs = Actuals;
CurToken = 0;
InstantiateLoc = Tok.getLocation();
AtStartOfLine = Tok.isAtStartOfLine();
HasLeadingSpace = Tok.hasLeadingSpace();
MacroTokens = &*Macro->tokens_begin();
OwnsMacroTokens = false;
NumMacroTokens = Macro->tokens_end()-Macro->tokens_begin();
// If this is a function-like macro, expand the arguments and change
// MacroTokens to point to the expanded tokens.
if (Macro->isFunctionLike() && Macro->getNumArgs())
ExpandFunctionArguments();
// Mark the macro as currently disabled, so that it is not recursively
// expanded. The macro must be disabled only after argument pre-expansion of
// function-like macro arguments occurs.
Macro->DisableMacro();
}
/// Create a macro expander for the specified token stream. This does not
/// take ownership of the specified token vector.
void MacroExpander::Init(const Token *TokArray, unsigned NumToks) {
// If the client is reusing a macro expander, make sure to free any memory
// associated with it.
destroy();
Macro = 0;
ActualArgs = 0;
MacroTokens = TokArray;
OwnsMacroTokens = false;
NumMacroTokens = NumToks;
CurToken = 0;
InstantiateLoc = SourceLocation();
AtStartOfLine = false;
HasLeadingSpace = false;
// Set HasLeadingSpace/AtStartOfLine so that the first token will be
// returned unmodified.
if (NumToks != 0) {
AtStartOfLine = TokArray[0].isAtStartOfLine();
HasLeadingSpace = TokArray[0].hasLeadingSpace();
}
}
void MacroExpander::destroy() {
// If this was a function-like macro that actually uses its arguments, delete
// the expanded tokens.
if (OwnsMacroTokens) {
delete [] MacroTokens;
MacroTokens = 0;
}
// MacroExpander owns its formal arguments.
if (ActualArgs) ActualArgs->destroy();
}
/// Expand the arguments of a function-like macro so that we can quickly
/// return preexpanded tokens from MacroTokens.
void MacroExpander::ExpandFunctionArguments() {
llvm::SmallVector<Token, 128> ResultToks;
// Loop through the MacroTokens tokens, expanding them into ResultToks. Keep
// track of whether we change anything. If not, no need to keep them. If so,
// we install the newly expanded sequence as MacroTokens.
bool MadeChange = false;
// NextTokGetsSpace - When this is true, the next token appended to the
// output list will get a leading space, regardless of whether it had one to
// begin with or not. This is used for placemarker support.
bool NextTokGetsSpace = false;
for (unsigned i = 0, e = NumMacroTokens; i != e; ++i) {
// If we found the stringify operator, get the argument stringified. The
// preprocessor already verified that the following token is a macro name
// when the #define was parsed.
const Token &CurTok = MacroTokens[i];
if (CurTok.getKind() == tok::hash || CurTok.getKind() == tok::hashat) {
int ArgNo = Macro->getArgumentNum(MacroTokens[i+1].getIdentifierInfo());
assert(ArgNo != -1 && "Token following # is not an argument?");
Token Res;
if (CurTok.getKind() == tok::hash) // Stringify
Res = ActualArgs->getStringifiedArgument(ArgNo, PP);
else {
// 'charify': don't bother caching these.
Res = StringifyArgument(ActualArgs->getUnexpArgument(ArgNo), PP, true);
}
// The stringified/charified string leading space flag gets set to match
// the #/#@ operator.
if (CurTok.hasLeadingSpace() || NextTokGetsSpace)
Res.setFlag(Token::LeadingSpace);
ResultToks.push_back(Res);
MadeChange = true;
++i; // Skip arg name.
NextTokGetsSpace = false;
continue;
}
// Otherwise, if this is not an argument token, just add the token to the
// output buffer.
IdentifierInfo *II = CurTok.getIdentifierInfo();
int ArgNo = II ? Macro->getArgumentNum(II) : -1;
if (ArgNo == -1) {
// This isn't an argument, just add it.
ResultToks.push_back(CurTok);
if (NextTokGetsSpace) {
ResultToks.back().setFlag(Token::LeadingSpace);
NextTokGetsSpace = false;
}
continue;
}
// An argument is expanded somehow, the result is different than the
// input.
MadeChange = true;
// Otherwise, this is a use of the argument. Find out if there is a paste
// (##) operator before or after the argument.
bool PasteBefore =
!ResultToks.empty() && ResultToks.back().getKind() == tok::hashhash;
bool PasteAfter = i+1 != e && MacroTokens[i+1].getKind() == tok::hashhash;
// If it is not the LHS/RHS of a ## operator, we must pre-expand the
// argument and substitute the expanded tokens into the result. This is
// C99 6.10.3.1p1.
if (!PasteBefore && !PasteAfter) {
const Token *ResultArgToks;
// Only preexpand the argument if it could possibly need it. This
// avoids some work in common cases.
const Token *ArgTok = ActualArgs->getUnexpArgument(ArgNo);
if (ActualArgs->ArgNeedsPreexpansion(ArgTok))
ResultArgToks = &ActualArgs->getPreExpArgument(ArgNo, PP)[0];
else
ResultArgToks = ArgTok; // Use non-preexpanded tokens.
// If the arg token expanded into anything, append it.
if (ResultArgToks->getKind() != tok::eof) {
unsigned FirstResult = ResultToks.size();
unsigned NumToks = MacroArgs::getArgLength(ResultArgToks);
ResultToks.append(ResultArgToks, ResultArgToks+NumToks);
// If any tokens were substituted from the argument, the whitespace
// before the first token should match the whitespace of the arg
// identifier.
ResultToks[FirstResult].setFlagValue(Token::LeadingSpace,
CurTok.hasLeadingSpace() ||
NextTokGetsSpace);
NextTokGetsSpace = false;
} else {
// If this is an empty argument, and if there was whitespace before the
// formal token, make sure the next token gets whitespace before it.
NextTokGetsSpace = CurTok.hasLeadingSpace();
}
continue;
}
// Okay, we have a token that is either the LHS or RHS of a paste (##)
// argument. It gets substituted as its non-pre-expanded tokens.
const Token *ArgToks = ActualArgs->getUnexpArgument(ArgNo);
unsigned NumToks = MacroArgs::getArgLength(ArgToks);
if (NumToks) { // Not an empty argument?
ResultToks.append(ArgToks, ArgToks+NumToks);
// If the next token was supposed to get leading whitespace, ensure it has
// it now.
if (NextTokGetsSpace) {
ResultToks[ResultToks.size()-NumToks].setFlag(Token::LeadingSpace);
NextTokGetsSpace = false;
}
continue;
}
// If an empty argument is on the LHS or RHS of a paste, the standard (C99
// 6.10.3.3p2,3) calls for a bunch of placemarker stuff to occur. We
// implement this by eating ## operators when a LHS or RHS expands to
// empty.
NextTokGetsSpace |= CurTok.hasLeadingSpace();
if (PasteAfter) {
// Discard the argument token and skip (don't copy to the expansion
// buffer) the paste operator after it.
NextTokGetsSpace |= MacroTokens[i+1].hasLeadingSpace();
++i;
continue;
}
// If this is on the RHS of a paste operator, we've already copied the
// paste operator to the ResultToks list. Remove it.
assert(PasteBefore && ResultToks.back().getKind() == tok::hashhash);
NextTokGetsSpace |= ResultToks.back().hasLeadingSpace();
ResultToks.pop_back();
// If this is the __VA_ARGS__ token, and if the argument wasn't provided,
// and if the macro had at least one real argument, and if the token before
// the ## was a comma, remove the comma.
if ((unsigned)ArgNo == Macro->getNumArgs()-1 && // is __VA_ARGS__
ActualArgs->isVarargsElidedUse() && // Argument elided.
!ResultToks.empty() && ResultToks.back().getKind() == tok::comma) {
// Never add a space, even if the comma, ##, or arg had a space.
NextTokGetsSpace = false;
ResultToks.pop_back();
}
continue;
}
// If anything changed, install this as the new MacroTokens list.
if (MadeChange) {
// This is deleted in the dtor.
NumMacroTokens = ResultToks.size();
Token *Res = new Token[ResultToks.size()];
if (NumMacroTokens)
memcpy(Res, &ResultToks[0], NumMacroTokens*sizeof(Token));
MacroTokens = Res;
OwnsMacroTokens = true;
}
}
/// Lex - Lex and return a token from this macro stream.
///
void MacroExpander::Lex(Token &Tok) {
// Lexing off the end of the macro, pop this macro off the expansion stack.
if (isAtEnd()) {
// If this is a macro (not a token stream), mark the macro enabled now
// that it is no longer being expanded.
if (Macro) Macro->EnableMacro();
// Pop this context off the preprocessors lexer stack and get the next
// token. This will delete "this" so remember the PP instance var.
Preprocessor &PPCache = PP;
if (PP.HandleEndOfMacro(Tok))
return;
// HandleEndOfMacro may not return a token. If it doesn't, lex whatever is
// next.
return PPCache.Lex(Tok);
}
// If this is the first token of the expanded result, we inherit spacing
// properties later.
bool isFirstToken = CurToken == 0;
// Get the next token to return.
Tok = MacroTokens[CurToken++];
// If this token is followed by a token paste (##) operator, paste the tokens!
if (!isAtEnd() && MacroTokens[CurToken].getKind() == tok::hashhash)
PasteTokens(Tok);
// The token's current location indicate where the token was lexed from. We
// need this information to compute the spelling of the token, but any
// diagnostics for the expanded token should appear as if they came from
// InstantiationLoc. Pull this information together into a new SourceLocation
// that captures all of this.
if (InstantiateLoc.isValid()) { // Don't do this for token streams.
SourceManager &SrcMgr = PP.getSourceManager();
Tok.setLocation(SrcMgr.getInstantiationLoc(Tok.getLocation(),
InstantiateLoc));
}
// If this is the first token, set the lexical properties of the token to
// match the lexical properties of the macro identifier.
if (isFirstToken) {
Tok.setFlagValue(Token::StartOfLine , AtStartOfLine);
Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
}
// Handle recursive expansion!
if (Tok.getIdentifierInfo())
return PP.HandleIdentifier(Tok);
// Otherwise, return a normal token.
}
/// PasteTokens - Tok is the LHS of a ## operator, and CurToken is the ##
/// operator. Read the ## and RHS, and paste the LHS/RHS together. If there
/// are is another ## after it, chomp it iteratively. Return the result as Tok.
void MacroExpander::PasteTokens(Token &Tok) {
llvm::SmallVector<char, 128> Buffer;
do {
// Consume the ## operator.
SourceLocation PasteOpLoc = MacroTokens[CurToken].getLocation();
++CurToken;
assert(!isAtEnd() && "No token on the RHS of a paste operator!");
// Get the RHS token.
const Token &RHS = MacroTokens[CurToken];
bool isInvalid = false;
// Allocate space for the result token. This is guaranteed to be enough for
// the two tokens and a null terminator.
Buffer.resize(Tok.getLength() + RHS.getLength() + 1);
// Get the spelling of the LHS token in Buffer.
const char *BufPtr = &Buffer[0];
unsigned LHSLen = PP.getSpelling(Tok, BufPtr);
if (BufPtr != &Buffer[0]) // Really, we want the chars in Buffer!
memcpy(&Buffer[0], BufPtr, LHSLen);
BufPtr = &Buffer[LHSLen];
unsigned RHSLen = PP.getSpelling(RHS, BufPtr);
if (BufPtr != &Buffer[LHSLen]) // Really, we want the chars in Buffer!
memcpy(&Buffer[LHSLen], BufPtr, RHSLen);
// Add null terminator.
Buffer[LHSLen+RHSLen] = '\0';
// Trim excess space.
Buffer.resize(LHSLen+RHSLen+1);
// Plop the pasted result (including the trailing newline and null) into a
// scratch buffer where we can lex it.
SourceLocation ResultTokLoc = PP.CreateString(&Buffer[0], Buffer.size());
// Lex the resultant pasted token into Result.
Token Result;
// Avoid testing /*, as the lexer would think it is the start of a comment
// and emit an error that it is unterminated.
if (Tok.getKind() == tok::slash && RHS.getKind() == tok::star) {
isInvalid = true;
} else if (Tok.getKind() == tok::identifier &&
RHS.getKind() == tok::identifier) {
// Common paste case: identifier+identifier = identifier. Avoid creating
// a lexer and other overhead.
PP.IncrementPasteCounter(true);
Result.startToken();
Result.setKind(tok::identifier);
Result.setLocation(ResultTokLoc);
Result.setLength(LHSLen+RHSLen);
} else {
PP.IncrementPasteCounter(false);
// Make a lexer to lex this string from.
SourceManager &SourceMgr = PP.getSourceManager();
const char *ResultStrData = SourceMgr.getCharacterData(ResultTokLoc);
// Make a lexer object so that we lex and expand the paste result.
Lexer *TL = new Lexer(ResultTokLoc, PP, ResultStrData,
ResultStrData+LHSLen+RHSLen /*don't include null*/);
// Lex a token in raw mode. This way it won't look up identifiers
// automatically, lexing off the end will return an eof token, and
// warnings are disabled. This returns true if the result token is the
// entire buffer.
bool IsComplete = TL->LexRawToken(Result);
// If we got an EOF token, we didn't form even ONE token. For example, we
// did "/ ## /" to get "//".
IsComplete &= Result.getKind() != tok::eof;
isInvalid = !IsComplete;
// We're now done with the temporary lexer.
delete TL;
}
// If pasting the two tokens didn't form a full new token, this is an error.
// This occurs with "x ## +" and other stuff. Return with Tok unmodified
// and with RHS as the next token to lex.
if (isInvalid) {
// If not in assembler language mode.
PP.Diag(PasteOpLoc, diag::err_pp_bad_paste,
std::string(Buffer.begin(), Buffer.end()-1));
return;
}
// Turn ## into 'other' to avoid # ## # from looking like a paste operator.
if (Result.getKind() == tok::hashhash)
Result.setKind(tok::unknown);
// FIXME: Turn __VARRGS__ into "not a token"?
// Transfer properties of the LHS over the the Result.
Result.setFlagValue(Token::StartOfLine , Tok.isAtStartOfLine());
Result.setFlagValue(Token::LeadingSpace, Tok.hasLeadingSpace());
// Finally, replace LHS with the result, consume the RHS, and iterate.
++CurToken;
Tok = Result;
} while (!isAtEnd() && MacroTokens[CurToken].getKind() == tok::hashhash);
// Now that we got the result token, it will be subject to expansion. Since
// token pasting re-lexes the result token in raw mode, identifier information
// isn't looked up. As such, if the result is an identifier, look up id info.
if (Tok.getKind() == tok::identifier) {
// Look up the identifier info for the token. We disabled identifier lookup
// by saying we're skipping contents, so we need to do this manually.
Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
}
}
/// isNextTokenLParen - If the next token lexed will pop this macro off the
/// expansion stack, return 2. If the next unexpanded token is a '(', return
/// 1, otherwise return 0.
unsigned MacroExpander::isNextTokenLParen() const {
// Out of tokens?
if (isAtEnd())
return 2;
return MacroTokens[CurToken].getKind() == tok::l_paren;
}

View File

@@ -1,73 +0,0 @@
//===--- MacroInfo.cpp - Information about #defined identifiers -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MacroInfo interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
MacroInfo::MacroInfo(SourceLocation DefLoc) : Location(DefLoc) {
IsFunctionLike = false;
IsC99Varargs = false;
IsGNUVarargs = false;
IsBuiltinMacro = false;
IsTargetSpecific = false;
IsDisabled = false;
IsUsed = true;
ArgumentList = 0;
NumArguments = 0;
}
/// isIdenticalTo - Return true if the specified macro definition is equal to
/// this macro in spelling, arguments, and whitespace. This is used to emit
/// duplicate definition warnings. This implements the rules in C99 6.10.3.
///
/// Note that this intentionally does not check isTargetSpecific for matching.
///
bool MacroInfo::isIdenticalTo(const MacroInfo &Other, Preprocessor &PP) const {
// Check # tokens in replacement, number of args, and various flags all match.
if (ReplacementTokens.size() != Other.ReplacementTokens.size() ||
getNumArgs() != Other.getNumArgs() ||
isFunctionLike() != Other.isFunctionLike() ||
isC99Varargs() != Other.isC99Varargs() ||
isGNUVarargs() != Other.isGNUVarargs())
return false;
// Check arguments.
for (arg_iterator I = arg_begin(), OI = Other.arg_begin(), E = arg_end();
I != E; ++I, ++OI)
if (*I != *OI) return false;
// Check all the tokens.
for (unsigned i = 0, e = ReplacementTokens.size(); i != e; ++i) {
const Token &A = ReplacementTokens[i];
const Token &B = Other.ReplacementTokens[i];
if (A.getKind() != B.getKind() ||
A.isAtStartOfLine() != B.isAtStartOfLine() ||
A.hasLeadingSpace() != B.hasLeadingSpace())
return false;
// If this is an identifier, it is easy.
if (A.getIdentifierInfo() || B.getIdentifierInfo()) {
if (A.getIdentifierInfo() != B.getIdentifierInfo())
return false;
continue;
}
// Otherwise, check the spelling.
if (PP.getSpelling(A) != PP.getSpelling(B))
return false;
}
return true;
}

View File

@@ -1,28 +0,0 @@
##===- clang/Lex/Makefile ----------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Chris Lattner and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements the Lexer library for the C-Language front-end.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
include $(LEVEL)/Makefile.config
LIBRARYNAME := clangLex
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
ifeq ($(ARCH),PowerPC)
CXXFLAGS += -maltivec
endif
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,659 +0,0 @@
//===--- PPExpressions.cpp - Preprocessor Expression Evaluation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Preprocessor::EvaluateDirectiveExpression method,
// which parses and evaluates integer constant expressions for #if directives.
//
//===----------------------------------------------------------------------===//
//
// FIXME: implement testing for #assert's.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;
static bool EvaluateDirectiveSubExpr(llvm::APSInt &LHS, unsigned MinPrec,
Token &PeekTok, bool ValueLive,
Preprocessor &PP);
/// DefinedTracker - This struct is used while parsing expressions to keep track
/// of whether !defined(X) has been seen.
///
/// With this simple scheme, we handle the basic forms:
/// !defined(X) and !defined X
/// but we also trivially handle (silly) stuff like:
/// !!!defined(X) and +!defined(X) and !+!+!defined(X) and !(defined(X)).
struct DefinedTracker {
/// Each time a Value is evaluated, it returns information about whether the
/// parsed value is of the form defined(X), !defined(X) or is something else.
enum TrackerState {
DefinedMacro, // defined(X)
NotDefinedMacro, // !defined(X)
Unknown // Something else.
} State;
/// TheMacro - When the state is DefinedMacro or NotDefinedMacro, this
/// indicates the macro that was checked.
IdentifierInfo *TheMacro;
};
/// EvaluateValue - Evaluate the token PeekTok (and any others needed) and
/// return the computed value in Result. Return true if there was an error
/// parsing. This function also returns information about the form of the
/// expression in DT. See above for information on what DT means.
///
/// If ValueLive is false, then this value is being evaluated in a context where
/// the result is not used. As such, avoid diagnostics that relate to
/// evaluation.
static bool EvaluateValue(llvm::APSInt &Result, Token &PeekTok,
DefinedTracker &DT, bool ValueLive,
Preprocessor &PP) {
Result = 0;
DT.State = DefinedTracker::Unknown;
// If this token's spelling is a pp-identifier, check to see if it is
// 'defined' or if it is a macro. Note that we check here because many
// keywords are pp-identifiers, so we can't check the kind.
if (IdentifierInfo *II = PeekTok.getIdentifierInfo()) {
// If this identifier isn't 'defined' and it wasn't macro expanded, it turns
// into a simple 0, unless it is the C++ keyword "true", in which case it
// turns into "1".
if (II->getPPKeywordID() != tok::pp_defined) {
Result = II->getTokenID() == tok::kw_true;
Result.setIsUnsigned(false); // "0" is signed intmax_t 0.
PP.LexNonComment(PeekTok);
return false;
}
// Handle "defined X" and "defined(X)".
// Get the next token, don't expand it.
PP.LexUnexpandedToken(PeekTok);
// Two options, it can either be a pp-identifier or a (.
bool InParens = false;
if (PeekTok.getKind() == tok::l_paren) {
// Found a paren, remember we saw it and skip it.
InParens = true;
PP.LexUnexpandedToken(PeekTok);
}
// If we don't have a pp-identifier now, this is an error.
if ((II = PeekTok.getIdentifierInfo()) == 0) {
PP.Diag(PeekTok, diag::err_pp_defined_requires_identifier);
return true;
}
// Otherwise, we got an identifier, is it defined to something?
Result = II->getMacroInfo() != 0;
Result.setIsUnsigned(false); // Result is signed intmax_t.
// If there is a macro, mark it used.
if (Result != 0 && ValueLive) {
II->getMacroInfo()->setIsUsed(true);
// If this is the first use of a target-specific macro, warn about it.
if (II->getMacroInfo()->isTargetSpecific()) {
// Don't warn on second use.
II->getMacroInfo()->setIsTargetSpecific(false);
PP.getTargetInfo().DiagnoseNonPortability(PeekTok.getLocation(),
diag::port_target_macro_use);
}
} else if (ValueLive) {
// Use of a target-specific macro for some other target? If so, warn.
if (II->isOtherTargetMacro()) {
II->setIsOtherTargetMacro(false); // Don't warn on second use.
PP.getTargetInfo().DiagnoseNonPortability(PeekTok.getLocation(),
diag::port_target_macro_use);
}
}
// Consume identifier.
PP.LexNonComment(PeekTok);
// If we are in parens, ensure we have a trailing ).
if (InParens) {
if (PeekTok.getKind() != tok::r_paren) {
PP.Diag(PeekTok, diag::err_pp_missing_rparen);
return true;
}
// Consume the ).
PP.LexNonComment(PeekTok);
}
// Success, remember that we saw defined(X).
DT.State = DefinedTracker::DefinedMacro;
DT.TheMacro = II;
return false;
}
switch (PeekTok.getKind()) {
default: // Non-value token.
PP.Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
case tok::eom:
case tok::r_paren:
// If there is no expression, report and exit.
PP.Diag(PeekTok, diag::err_pp_expected_value_in_expr);
return true;
case tok::numeric_constant: {
llvm::SmallString<64> IntegerBuffer;
IntegerBuffer.resize(PeekTok.getLength());
const char *ThisTokBegin = &IntegerBuffer[0];
unsigned ActualLength = PP.getSpelling(PeekTok, ThisTokBegin);
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
PeekTok.getLocation(), PP);
if (Literal.hadError)
return true; // a diagnostic was already reported.
if (Literal.isFloatingLiteral() || Literal.isImaginary) {
PP.Diag(PeekTok, diag::err_pp_illegal_floating_literal);
return true;
}
assert(Literal.isIntegerLiteral() && "Unknown ppnumber");
// long long is a C99 feature.
if (!PP.getLangOptions().C99 && !PP.getLangOptions().CPlusPlus0x
&& Literal.isLongLong)
PP.Diag(PeekTok, diag::ext_longlong);
// Parse the integer literal into Result.
if (Literal.GetIntegerValue(Result)) {
// Overflow parsing integer literal.
if (ValueLive) PP.Diag(PeekTok, diag::warn_integer_too_large);
Result.setIsUnsigned(true);
} else {
// Set the signedness of the result to match whether there was a U suffix
// or not.
Result.setIsUnsigned(Literal.isUnsigned);
// Detect overflow based on whether the value is signed. If signed
// and if the value is too large, emit a warning "integer constant is so
// large that it is unsigned" e.g. on 12345678901234567890 where intmax_t
// is 64-bits.
if (!Literal.isUnsigned && Result.isNegative()) {
if (ValueLive)PP.Diag(PeekTok, diag::warn_integer_too_large_for_signed);
Result.setIsUnsigned(true);
}
}
// Consume the token.
PP.LexNonComment(PeekTok);
return false;
}
case tok::char_constant: { // 'x'
llvm::SmallString<32> CharBuffer;
CharBuffer.resize(PeekTok.getLength());
const char *ThisTokBegin = &CharBuffer[0];
unsigned ActualLength = PP.getSpelling(PeekTok, ThisTokBegin);
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
PeekTok.getLocation(), PP);
if (Literal.hadError())
return true; // A diagnostic was already emitted.
// Character literals are always int or wchar_t, expand to intmax_t.
TargetInfo &TI = PP.getTargetInfo();
unsigned NumBits;
if (Literal.isWide())
NumBits = TI.getWCharWidth(PeekTok.getLocation());
else
NumBits = TI.getCharWidth(PeekTok.getLocation());
// Set the width.
llvm::APSInt Val(NumBits);
// Set the value.
Val = Literal.getValue();
// Set the signedness.
Val.setIsUnsigned(!TI.isCharSigned(PeekTok.getLocation()));
if (Result.getBitWidth() > Val.getBitWidth()) {
if (Val.isSigned())
Result = Val.sext(Result.getBitWidth());
else
Result = Val.zext(Result.getBitWidth());
Result.setIsUnsigned(Val.isUnsigned());
} else {
assert(Result.getBitWidth() == Val.getBitWidth() &&
"intmax_t smaller than char/wchar_t?");
Result = Val;
}
// Consume the token.
PP.LexNonComment(PeekTok);
return false;
}
case tok::l_paren:
PP.LexNonComment(PeekTok); // Eat the (.
// Parse the value and if there are any binary operators involved, parse
// them.
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
// If this is a silly value like (X), which doesn't need parens, check for
// !(defined X).
if (PeekTok.getKind() == tok::r_paren) {
// Just use DT unmodified as our result.
} else {
if (EvaluateDirectiveSubExpr(Result, 1, PeekTok, ValueLive, PP))
return true;
if (PeekTok.getKind() != tok::r_paren) {
PP.Diag(PeekTok, diag::err_pp_expected_rparen);
return true;
}
DT.State = DefinedTracker::Unknown;
}
PP.LexNonComment(PeekTok); // Eat the ).
return false;
case tok::plus:
// Unary plus doesn't modify the value.
PP.LexNonComment(PeekTok);
return EvaluateValue(Result, PeekTok, DT, ValueLive, PP);
case tok::minus: {
SourceLocation Loc = PeekTok.getLocation();
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
// C99 6.5.3.3p3: The sign of the result matches the sign of the operand.
Result = -Result;
bool Overflow = false;
if (Result.isUnsigned())
Overflow = !Result.isPositive();
else if (Result.isMinSignedValue())
Overflow = true; // -MININT is the only thing that overflows.
// If this operator is live and overflowed, report the issue.
if (Overflow && ValueLive)
PP.Diag(Loc, diag::warn_pp_expr_overflow);
DT.State = DefinedTracker::Unknown;
return false;
}
case tok::tilde:
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
// C99 6.5.3.3p4: The sign of the result matches the sign of the operand.
Result = ~Result;
DT.State = DefinedTracker::Unknown;
return false;
case tok::exclaim:
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
Result = !Result;
// C99 6.5.3.3p5: The sign of the result is 'int', aka it is signed.
Result.setIsUnsigned(false);
if (DT.State == DefinedTracker::DefinedMacro)
DT.State = DefinedTracker::NotDefinedMacro;
else if (DT.State == DefinedTracker::NotDefinedMacro)
DT.State = DefinedTracker::DefinedMacro;
return false;
// FIXME: Handle #assert
}
}
/// getPrecedence - Return the precedence of the specified binary operator
/// token. This returns:
/// ~0 - Invalid token.
/// 14 - *,/,%
/// 13 - -,+
/// 12 - <<,>>
/// 11 - >=, <=, >, <
/// 10 - ==, !=
/// 9 - &
/// 8 - ^
/// 7 - |
/// 6 - &&
/// 5 - ||
/// 4 - ?
/// 3 - :
/// 0 - eom, )
static unsigned getPrecedence(tok::TokenKind Kind) {
switch (Kind) {
default: return ~0U;
case tok::percent:
case tok::slash:
case tok::star: return 14;
case tok::plus:
case tok::minus: return 13;
case tok::lessless:
case tok::greatergreater: return 12;
case tok::lessequal:
case tok::less:
case tok::greaterequal:
case tok::greater: return 11;
case tok::exclaimequal:
case tok::equalequal: return 10;
case tok::amp: return 9;
case tok::caret: return 8;
case tok::pipe: return 7;
case tok::ampamp: return 6;
case tok::pipepipe: return 5;
case tok::question: return 4;
case tok::colon: return 3;
case tok::comma: return 2;
case tok::r_paren: return 0; // Lowest priority, end of expr.
case tok::eom: return 0; // Lowest priority, end of macro.
}
}
/// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is
/// PeekTok, and whose precedence is PeekPrec.
///
/// If ValueLive is false, then this value is being evaluated in a context where
/// the result is not used. As such, avoid diagnostics that relate to
/// evaluation.
static bool EvaluateDirectiveSubExpr(llvm::APSInt &LHS, unsigned MinPrec,
Token &PeekTok, bool ValueLive,
Preprocessor &PP) {
unsigned PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
PP.Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
}
while (1) {
// If this token has a lower precedence than we are allowed to parse, return
// it so that higher levels of the recursion can parse it.
if (PeekPrec < MinPrec)
return false;
tok::TokenKind Operator = PeekTok.getKind();
// If this is a short-circuiting operator, see if the RHS of the operator is
// dead. Note that this cannot just clobber ValueLive. Consider
// "0 && 1 ? 4 : 1 / 0", which is parsed as "(0 && 1) ? 4 : (1 / 0)". In
// this example, the RHS of the && being dead does not make the rest of the
// expr dead.
bool RHSIsLive;
if (Operator == tok::ampamp && LHS == 0)
RHSIsLive = false; // RHS of "0 && x" is dead.
else if (Operator == tok::pipepipe && LHS != 0)
RHSIsLive = false; // RHS of "1 || x" is dead.
else if (Operator == tok::question && LHS == 0)
RHSIsLive = false; // RHS (x) of "0 ? x : y" is dead.
else
RHSIsLive = ValueLive;
// Consume the operator, saving the operator token for error reporting.
Token OpToken = PeekTok;
PP.LexNonComment(PeekTok);
llvm::APSInt RHS(LHS.getBitWidth());
// Parse the RHS of the operator.
DefinedTracker DT;
if (EvaluateValue(RHS, PeekTok, DT, RHSIsLive, PP)) return true;
// Remember the precedence of this operator and get the precedence of the
// operator immediately to the right of the RHS.
unsigned ThisPrec = PeekPrec;
PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
PP.Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
}
bool isRightAssoc = Operator == tok::question;
// Get the precedence of the operator to the right of the RHS. If it binds
// more tightly with RHS than we do, evaluate it completely first.
if (ThisPrec < PeekPrec ||
(ThisPrec == PeekPrec && isRightAssoc)) {
if (EvaluateDirectiveSubExpr(RHS, ThisPrec+1, PeekTok, RHSIsLive, PP))
return true;
PeekPrec = getPrecedence(PeekTok.getKind());
}
assert(PeekPrec <= ThisPrec && "Recursion didn't work!");
// Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if
// either operand is unsigned. Don't do this for x and y in "x ? y : z".
llvm::APSInt Res(LHS.getBitWidth());
if (Operator != tok::question) {
Res.setIsUnsigned(LHS.isUnsigned()|RHS.isUnsigned());
// If this just promoted something from signed to unsigned, and if the
// value was negative, warn about it.
if (ValueLive && Res.isUnsigned()) {
if (!LHS.isUnsigned() && LHS.isNegative())
PP.Diag(OpToken, diag::warn_pp_convert_lhs_to_positive,
LHS.toStringSigned() + " to " + LHS.toStringUnsigned());
if (!RHS.isUnsigned() && RHS.isNegative())
PP.Diag(OpToken, diag::warn_pp_convert_rhs_to_positive,
RHS.toStringSigned() + " to " + RHS.toStringUnsigned());
}
LHS.setIsUnsigned(Res.isUnsigned());
RHS.setIsUnsigned(Res.isUnsigned());
}
// FIXME: All of these should detect and report overflow??
bool Overflow = false;
switch (Operator) {
default: assert(0 && "Unknown operator token!");
case tok::percent:
if (RHS == 0) {
if (ValueLive) PP.Diag(OpToken, diag::err_pp_remainder_by_zero);
return true;
}
Res = LHS % RHS;
break;
case tok::slash:
if (RHS == 0) {
if (ValueLive) PP.Diag(OpToken, diag::err_pp_division_by_zero);
return true;
}
Res = LHS / RHS;
if (LHS.isSigned())
Overflow = LHS.isMinSignedValue() && RHS.isAllOnesValue(); // MININT/-1
break;
case tok::star:
Res = LHS * RHS;
if (LHS != 0 && RHS != 0)
Overflow = Res/RHS != LHS || Res/LHS != RHS;
break;
case tok::lessless: {
// Determine whether overflow is about to happen.
unsigned ShAmt = static_cast<unsigned>(RHS.getLimitedValue());
if (ShAmt >= LHS.getBitWidth())
Overflow = true, ShAmt = LHS.getBitWidth()-1;
else if (LHS.isUnsigned())
Overflow = ShAmt > LHS.countLeadingZeros();
else if (LHS.isPositive())
Overflow = ShAmt >= LHS.countLeadingZeros(); // Don't allow sign change.
else
Overflow = ShAmt >= LHS.countLeadingOnes();
Res = LHS << ShAmt;
break;
}
case tok::greatergreater: {
// Determine whether overflow is about to happen.
unsigned ShAmt = static_cast<unsigned>(RHS.getLimitedValue());
if (ShAmt >= LHS.getBitWidth())
Overflow = true, ShAmt = LHS.getBitWidth()-1;
Res = LHS >> ShAmt;
break;
}
case tok::plus:
Res = LHS + RHS;
if (LHS.isUnsigned())
Overflow = Res.ult(LHS);
else if (LHS.isPositive() == RHS.isPositive() &&
Res.isPositive() != LHS.isPositive())
Overflow = true; // Overflow for signed addition.
break;
case tok::minus:
Res = LHS - RHS;
if (LHS.isUnsigned())
Overflow = Res.ugt(LHS);
else if (LHS.isPositive() != RHS.isPositive() &&
Res.isPositive() != LHS.isPositive())
Overflow = true; // Overflow for signed subtraction.
break;
case tok::lessequal:
Res = LHS <= RHS;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::less:
Res = LHS < RHS;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::greaterequal:
Res = LHS >= RHS;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::greater:
Res = LHS > RHS;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::exclaimequal:
Res = LHS != RHS;
Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed)
break;
case tok::equalequal:
Res = LHS == RHS;
Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed)
break;
case tok::amp:
Res = LHS & RHS;
break;
case tok::caret:
Res = LHS ^ RHS;
break;
case tok::pipe:
Res = LHS | RHS;
break;
case tok::ampamp:
Res = (LHS != 0 && RHS != 0);
Res.setIsUnsigned(false); // C99 6.5.13p3, result is always int (signed)
break;
case tok::pipepipe:
Res = (LHS != 0 || RHS != 0);
Res.setIsUnsigned(false); // C99 6.5.14p3, result is always int (signed)
break;
case tok::comma:
PP.Diag(OpToken, diag::ext_pp_comma_expr);
Res = RHS; // LHS = LHS,RHS -> RHS.
break;
case tok::question: {
// Parse the : part of the expression.
if (PeekTok.getKind() != tok::colon) {
PP.Diag(OpToken, diag::err_pp_question_without_colon);
return true;
}
// Consume the :.
PP.LexNonComment(PeekTok);
// Evaluate the value after the :.
bool AfterColonLive = ValueLive && LHS == 0;
llvm::APSInt AfterColonVal(LHS.getBitWidth());
DefinedTracker DT;
if (EvaluateValue(AfterColonVal, PeekTok, DT, AfterColonLive, PP))
return true;
// Parse anything after the : RHS that has a higher precedence than ?.
if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec+1,
PeekTok, AfterColonLive, PP))
return true;
// Now that we have the condition, the LHS and the RHS of the :, evaluate.
Res = LHS != 0 ? RHS : AfterColonVal;
// Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if
// either operand is unsigned.
Res.setIsUnsigned(RHS.isUnsigned() | AfterColonVal.isUnsigned());
// Figure out the precedence of the token after the : part.
PeekPrec = getPrecedence(PeekTok.getKind());
break;
}
case tok::colon:
// Don't allow :'s to float around without being part of ?: exprs.
PP.Diag(OpToken, diag::err_pp_colon_without_question);
return true;
}
// If this operator is live and overflowed, report the issue.
if (Overflow && ValueLive)
PP.Diag(OpToken, diag::warn_pp_expr_overflow);
// Put the result back into 'LHS' for our next iteration.
LHS = Res;
}
return false;
}
/// EvaluateDirectiveExpression - Evaluate an integer constant expression that
/// may occur after a #if or #elif directive. If the expression is equivalent
/// to "!defined(X)" return X in IfNDefMacro.
bool Preprocessor::
EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro) {
// Peek ahead one token.
Token Tok;
Lex(Tok);
// C99 6.10.1p3 - All expressions are evaluated as intmax_t or uintmax_t.
unsigned BitWidth = getTargetInfo().getIntMaxTWidth(Tok.getLocation());
llvm::APSInt ResVal(BitWidth);
DefinedTracker DT;
if (EvaluateValue(ResVal, Tok, DT, true, *this)) {
// Parse error, skip the rest of the macro line.
if (Tok.getKind() != tok::eom)
DiscardUntilEndOfDirective();
return false;
}
// If we are at the end of the expression after just parsing a value, there
// must be no (unparenthesized) binary operators involved, so we can exit
// directly.
if (Tok.getKind() == tok::eom) {
// If the expression we parsed was of the form !defined(macro), return the
// macro in IfNDefMacro.
if (DT.State == DefinedTracker::NotDefinedMacro)
IfNDefMacro = DT.TheMacro;
return ResVal != 0;
}
// Otherwise, we must have a binary operator (e.g. "#if 1 < 2"), so parse the
// operator and the stuff after it.
if (EvaluateDirectiveSubExpr(ResVal, 1, Tok, true, *this)) {
// Parse error, skip the rest of the macro line.
if (Tok.getKind() != tok::eom)
DiscardUntilEndOfDirective();
return false;
}
// If we aren't at the tok::eom token, something bad happened, like an extra
// ')' token.
if (Tok.getKind() != tok::eom) {
Diag(Tok, diag::err_pp_expected_eol);
DiscardUntilEndOfDirective();
}
return ResVal != 0;
}

View File

@@ -1,367 +0,0 @@
//===--- Pragma.cpp - Pragma registration and handling --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PragmaHandler/PragmaTable interfaces and implements
// pragma related methods of the Preprocessor class.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Pragma.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
// Out-of-line destructor to provide a home for the class.
PragmaHandler::~PragmaHandler() {
}
//===----------------------------------------------------------------------===//
// PragmaNamespace Implementation.
//===----------------------------------------------------------------------===//
PragmaNamespace::~PragmaNamespace() {
for (unsigned i = 0, e = Handlers.size(); i != e; ++i)
delete Handlers[i];
}
/// FindHandler - Check to see if there is already a handler for the
/// specified name. If not, return the handler for the null identifier if it
/// exists, otherwise return null. If IgnoreNull is true (the default) then
/// the null handler isn't returned on failure to match.
PragmaHandler *PragmaNamespace::FindHandler(const IdentifierInfo *Name,
bool IgnoreNull) const {
PragmaHandler *NullHandler = 0;
for (unsigned i = 0, e = Handlers.size(); i != e; ++i) {
if (Handlers[i]->getName() == Name)
return Handlers[i];
if (Handlers[i]->getName() == 0)
NullHandler = Handlers[i];
}
return IgnoreNull ? 0 : NullHandler;
}
void PragmaNamespace::HandlePragma(Preprocessor &PP, Token &Tok) {
// Read the 'namespace' that the directive is in, e.g. STDC. Do not macro
// expand it, the user can have a STDC #define, that should not affect this.
PP.LexUnexpandedToken(Tok);
// Get the handler for this token. If there is no handler, ignore the pragma.
PragmaHandler *Handler = FindHandler(Tok.getIdentifierInfo(), false);
if (Handler == 0) return;
// Otherwise, pass it down.
Handler->HandlePragma(PP, Tok);
}
//===----------------------------------------------------------------------===//
// Preprocessor Pragma Directive Handling.
//===----------------------------------------------------------------------===//
/// HandlePragmaDirective - The "#pragma" directive has been parsed. Lex the
/// rest of the pragma, passing it to the registered pragma handlers.
void Preprocessor::HandlePragmaDirective() {
++NumPragma;
// Invoke the first level of pragma handlers which reads the namespace id.
Token Tok;
PragmaHandlers->HandlePragma(*this, Tok);
// If the pragma handler didn't read the rest of the line, consume it now.
if (CurLexer->ParsingPreprocessorDirective)
DiscardUntilEndOfDirective();
}
/// Handle_Pragma - Read a _Pragma directive, slice it up, process it, then
/// return the first token after the directive. The _Pragma token has just
/// been read into 'Tok'.
void Preprocessor::Handle_Pragma(Token &Tok) {
// Remember the pragma token location.
SourceLocation PragmaLoc = Tok.getLocation();
// Read the '('.
Lex(Tok);
if (Tok.getKind() != tok::l_paren)
return Diag(PragmaLoc, diag::err__Pragma_malformed);
// Read the '"..."'.
Lex(Tok);
if (Tok.getKind() != tok::string_literal &&
Tok.getKind() != tok::wide_string_literal)
return Diag(PragmaLoc, diag::err__Pragma_malformed);
// Remember the string.
std::string StrVal = getSpelling(Tok);
SourceLocation StrLoc = Tok.getLocation();
// Read the ')'.
Lex(Tok);
if (Tok.getKind() != tok::r_paren)
return Diag(PragmaLoc, diag::err__Pragma_malformed);
// The _Pragma is lexically sound. Destringize according to C99 6.10.9.1.
if (StrVal[0] == 'L') // Remove L prefix.
StrVal.erase(StrVal.begin());
assert(StrVal[0] == '"' && StrVal[StrVal.size()-1] == '"' &&
"Invalid string token!");
// Remove the front quote, replacing it with a space, so that the pragma
// contents appear to have a space before them.
StrVal[0] = ' ';
// Replace the terminating quote with a \n\0.
StrVal[StrVal.size()-1] = '\n';
StrVal += '\0';
// Remove escaped quotes and escapes.
for (unsigned i = 0, e = StrVal.size(); i != e-1; ++i) {
if (StrVal[i] == '\\' &&
(StrVal[i+1] == '\\' || StrVal[i+1] == '"')) {
// \\ -> '\' and \" -> '"'.
StrVal.erase(StrVal.begin()+i);
--e;
}
}
// Plop the string (including the newline and trailing null) into a buffer
// where we can lex it.
SourceLocation TokLoc = CreateString(&StrVal[0], StrVal.size(), StrLoc);
const char *StrData = SourceMgr.getCharacterData(TokLoc);
// Make and enter a lexer object so that we lex and expand the tokens just
// like any others.
Lexer *TL = new Lexer(TokLoc, *this,
StrData, StrData+StrVal.size()-1 /* no null */);
// Ensure that the lexer thinks it is inside a directive, so that end \n will
// return an EOM token.
TL->ParsingPreprocessorDirective = true;
// This lexer really is for _Pragma.
TL->Is_PragmaLexer = true;
EnterSourceFileWithLexer(TL, 0);
// With everything set up, lex this as a #pragma directive.
HandlePragmaDirective();
// Finally, return whatever came after the pragma directive.
return Lex(Tok);
}
/// HandlePragmaOnce - Handle #pragma once. OnceTok is the 'once'.
///
void Preprocessor::HandlePragmaOnce(Token &OnceTok) {
if (isInPrimaryFile()) {
Diag(OnceTok, diag::pp_pragma_once_in_main_file);
return;
}
// Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
SourceLocation FileLoc = getCurrentFileLexer()->getFileLoc();
// Mark the file as a once-only file now.
HeaderInfo.MarkFileIncludeOnce(SourceMgr.getFileEntryForLoc(FileLoc));
}
/// HandlePragmaPoison - Handle #pragma GCC poison. PoisonTok is the 'poison'.
///
void Preprocessor::HandlePragmaPoison(Token &PoisonTok) {
Token Tok;
while (1) {
// Read the next token to poison. While doing this, pretend that we are
// skipping while reading the identifier to poison.
// This avoids errors on code like:
// #pragma GCC poison X
// #pragma GCC poison X
if (CurLexer) CurLexer->LexingRawMode = true;
LexUnexpandedToken(Tok);
if (CurLexer) CurLexer->LexingRawMode = false;
// If we reached the end of line, we're done.
if (Tok.getKind() == tok::eom) return;
// Can only poison identifiers.
if (Tok.getKind() != tok::identifier) {
Diag(Tok, diag::err_pp_invalid_poison);
return;
}
// Look up the identifier info for the token. We disabled identifier lookup
// by saying we're skipping contents, so we need to do this manually.
IdentifierInfo *II = LookUpIdentifierInfo(Tok);
// Already poisoned.
if (II->isPoisoned()) continue;
// If this is a macro identifier, emit a warning.
if (II->getMacroInfo())
Diag(Tok, diag::pp_poisoning_existing_macro);
// Finally, poison it!
II->setIsPoisoned();
}
}
/// HandlePragmaSystemHeader - Implement #pragma GCC system_header. We know
/// that the whole directive has been parsed.
void Preprocessor::HandlePragmaSystemHeader(Token &SysHeaderTok) {
if (isInPrimaryFile()) {
Diag(SysHeaderTok, diag::pp_pragma_sysheader_in_main_file);
return;
}
// Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
Lexer *TheLexer = getCurrentFileLexer();
// Mark the file as a system header.
const FileEntry *File = SourceMgr.getFileEntryForLoc(TheLexer->getFileLoc());
HeaderInfo.MarkFileSystemHeader(File);
// Notify the client, if desired, that we are in a new source file.
if (Callbacks)
Callbacks->FileChanged(TheLexer->getSourceLocation(TheLexer->BufferPtr),
PPCallbacks::SystemHeaderPragma,
DirectoryLookup::SystemHeaderDir);
}
/// HandlePragmaDependency - Handle #pragma GCC dependency "foo" blah.
///
void Preprocessor::HandlePragmaDependency(Token &DependencyTok) {
Token FilenameTok;
CurLexer->LexIncludeFilename(FilenameTok);
// If the token kind is EOM, the error has already been diagnosed.
if (FilenameTok.getKind() == tok::eom)
return;
// Reserve a buffer to get the spelling.
llvm::SmallVector<char, 128> FilenameBuffer;
FilenameBuffer.resize(FilenameTok.getLength());
const char *FilenameStart = &FilenameBuffer[0];
unsigned Len = getSpelling(FilenameTok, FilenameStart);
const char *FilenameEnd = FilenameStart+Len;
bool isAngled = GetIncludeFilenameSpelling(FilenameTok.getLocation(),
FilenameStart, FilenameEnd);
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
// error.
if (FilenameStart == 0)
return;
// Search include directories for this file.
const DirectoryLookup *CurDir;
const FileEntry *File = LookupFile(FilenameStart, FilenameEnd,
isAngled, 0, CurDir);
if (File == 0)
return Diag(FilenameTok, diag::err_pp_file_not_found,
std::string(FilenameStart, FilenameEnd));
SourceLocation FileLoc = getCurrentFileLexer()->getFileLoc();
const FileEntry *CurFile = SourceMgr.getFileEntryForLoc(FileLoc);
// If this file is older than the file it depends on, emit a diagnostic.
if (CurFile && CurFile->getModificationTime() < File->getModificationTime()) {
// Lex tokens at the end of the message and include them in the message.
std::string Message;
Lex(DependencyTok);
while (DependencyTok.getKind() != tok::eom) {
Message += getSpelling(DependencyTok) + " ";
Lex(DependencyTok);
}
Message.erase(Message.end()-1);
Diag(FilenameTok, diag::pp_out_of_date_dependency, Message);
}
}
/// AddPragmaHandler - Add the specified pragma handler to the preprocessor.
/// If 'Namespace' is non-null, then it is a token required to exist on the
/// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
void Preprocessor::AddPragmaHandler(const char *Namespace,
PragmaHandler *Handler) {
PragmaNamespace *InsertNS = PragmaHandlers;
// If this is specified to be in a namespace, step down into it.
if (Namespace) {
IdentifierInfo *NSID = getIdentifierInfo(Namespace);
// If there is already a pragma handler with the name of this namespace,
// we either have an error (directive with the same name as a namespace) or
// we already have the namespace to insert into.
if (PragmaHandler *Existing = PragmaHandlers->FindHandler(NSID)) {
InsertNS = Existing->getIfNamespace();
assert(InsertNS != 0 && "Cannot have a pragma namespace and pragma"
" handler with the same name!");
} else {
// Otherwise, this namespace doesn't exist yet, create and insert the
// handler for it.
InsertNS = new PragmaNamespace(NSID);
PragmaHandlers->AddPragma(InsertNS);
}
}
// Check to make sure we don't already have a pragma for this identifier.
assert(!InsertNS->FindHandler(Handler->getName()) &&
"Pragma handler already exists for this identifier!");
InsertNS->AddPragma(Handler);
}
namespace {
struct PragmaOnceHandler : public PragmaHandler {
PragmaOnceHandler(const IdentifierInfo *OnceID) : PragmaHandler(OnceID) {}
virtual void HandlePragma(Preprocessor &PP, Token &OnceTok) {
PP.CheckEndOfDirective("#pragma once");
PP.HandlePragmaOnce(OnceTok);
}
};
struct PragmaPoisonHandler : public PragmaHandler {
PragmaPoisonHandler(const IdentifierInfo *ID) : PragmaHandler(ID) {}
virtual void HandlePragma(Preprocessor &PP, Token &PoisonTok) {
PP.HandlePragmaPoison(PoisonTok);
}
};
struct PragmaSystemHeaderHandler : public PragmaHandler {
PragmaSystemHeaderHandler(const IdentifierInfo *ID) : PragmaHandler(ID) {}
virtual void HandlePragma(Preprocessor &PP, Token &SHToken) {
PP.HandlePragmaSystemHeader(SHToken);
PP.CheckEndOfDirective("#pragma");
}
};
struct PragmaDependencyHandler : public PragmaHandler {
PragmaDependencyHandler(const IdentifierInfo *ID) : PragmaHandler(ID) {}
virtual void HandlePragma(Preprocessor &PP, Token &DepToken) {
PP.HandlePragmaDependency(DepToken);
}
};
} // end anonymous namespace
/// RegisterBuiltinPragmas - Install the standard preprocessor pragmas:
/// #pragma GCC poison/system_header/dependency and #pragma once.
void Preprocessor::RegisterBuiltinPragmas() {
AddPragmaHandler(0, new PragmaOnceHandler(getIdentifierInfo("once")));
AddPragmaHandler("GCC", new PragmaPoisonHandler(getIdentifierInfo("poison")));
AddPragmaHandler("GCC", new PragmaSystemHeaderHandler(
getIdentifierInfo("system_header")));
AddPragmaHandler("GCC", new PragmaDependencyHandler(
getIdentifierInfo("dependency")));
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,71 +0,0 @@
//===--- ScratchBuffer.cpp - Scratch space for forming tokens -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScratchBuffer interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/ScratchBuffer.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace clang;
// ScratchBufSize - The size of each chunk of scratch memory. Slightly less
//than a page, almost certainly enough for anything. :)
static const unsigned ScratchBufSize = 4060;
ScratchBuffer::ScratchBuffer(SourceManager &SM) : SourceMgr(SM), CurBuffer(0) {
// Set BytesUsed so that the first call to getToken will require an alloc.
BytesUsed = ScratchBufSize;
FileID = 0;
}
/// getToken - Splat the specified text into a temporary MemoryBuffer and
/// return a SourceLocation that refers to the token. This is just like the
/// method below, but returns a location that indicates the physloc of the
/// token.
SourceLocation ScratchBuffer::getToken(const char *Buf, unsigned Len) {
if (BytesUsed+Len > ScratchBufSize)
AllocScratchBuffer(Len);
// Copy the token data into the buffer.
memcpy(CurBuffer+BytesUsed, Buf, Len);
// Remember that we used these bytes.
BytesUsed += Len;
assert(BytesUsed-Len < (1 << SourceLocation::FilePosBits) &&
"Out of range file position!");
return SourceLocation::getFileLoc(FileID, BytesUsed-Len);
}
/// getToken - Splat the specified text into a temporary MemoryBuffer and
/// return a SourceLocation that refers to the token. The SourceLoc value
/// gives a virtual location that the token will appear to be from.
SourceLocation ScratchBuffer::getToken(const char *Buf, unsigned Len,
SourceLocation SourceLoc) {
// Map the physloc to the specified sourceloc.
return SourceMgr.getInstantiationLoc(getToken(Buf, Len), SourceLoc);
}
void ScratchBuffer::AllocScratchBuffer(unsigned RequestLen) {
// Only pay attention to the requested length if it is larger than our default
// page size. If it is, we allocate an entire chunk for it. This is to
// support gigantic tokens, which almost certainly won't happen. :)
if (RequestLen < ScratchBufSize)
RequestLen = ScratchBufSize;
llvm::MemoryBuffer *Buf =
llvm::MemoryBuffer::getNewMemBuffer(RequestLen, "<scratch space>");
FileID = SourceMgr.createFileIDForMemBuffer(Buf);
CurBuffer = const_cast<char*>(Buf->getBufferStart());
BytesUsed = 0;
}

View File

@@ -1,11 +0,0 @@
LEVEL = ../..
DIRS := Basic Lex Parse AST Sema CodeGen Analysis Driver
include $(LEVEL)/Makefile.common
test::
cd test; $(MAKE)
clean::
@rm -rf build
@rm -rf `find test -name Output`

View File

@@ -1,5 +0,0 @@
# This file provides information for llvm-top
DepModule: llvm
ConfigCmd:
ConfigTest:
BuildCmd:

View File

@@ -1,219 +0,0 @@
//===---------------------------------------------------------------------===//
// Random Notes
//===---------------------------------------------------------------------===//
C90/C99/C++ Comparisons:
http://david.tribble.com/text/cdiffs.htm
//===---------------------------------------------------------------------===//
Extensions:
* "#define_target X Y"
This preprocessor directive works exactly the same was as #define, but it
notes that 'X' is a target-specific preprocessor directive. When used, a
diagnostic is emitted indicating that the translation unit is non-portable.
If a target-define is #undef'd before use, no diagnostic is emitted. If 'X'
were previously a normal #define macro, the macro is tainted. If 'X' is
subsequently #defined as a non-target-specific define, the taint bit is
cleared.
* "#define_other_target X"
The preprocessor directive takes a single identifier argument. It notes
that this identifier is a target-specific #define for some target other than
the current one. Use of this identifier will result in a diagnostic.
If 'X' is later #undef'd or #define'd, the taint bit is cleared. If 'X' is
already defined, X is marked as a target-specific define.
//===---------------------------------------------------------------------===//
To time GCC preprocessing speed without output, use:
"time gcc -MM file"
This is similar to -Eonly.
//===---------------------------------------------------------------------===//
C++ Template Instantiation benchmark:
http://users.rcn.com/abrahams/instantiation_speed/index.html
//===---------------------------------------------------------------------===//
TODO: File Manager Speedup:
We currently do a lot of stat'ing for files that don't exist, particularly
when lots of -I paths exist (e.g. see the <iostream> example, check for
failures in stat in FileManager::getFile). It would be far better to make
the following changes:
1. FileEntry contains a sys::Path instead of a std::string for Name.
2. sys::Path contains timestamp and size, lazily computed. Eliminate from
FileEntry.
3. File UIDs are created on request, not when files are opened.
These changes make it possible to efficiently have FileEntry objects for
files that exist on the file system, but have not been used yet.
Once this is done:
1. DirectoryEntry gets a boolean value "has read entries". When false, not
all entries in the directory are in the file mgr, when true, they are.
2. Instead of stat'ing the file in FileManager::getFile, check to see if
the dir has been read. If so, fail immediately, if not, read the dir,
then retry.
3. Reading the dir uses the getdirentries syscall, creating an FileEntry
for all files found.
//===---------------------------------------------------------------------===//
TODO: Fast #Import:
* Get frameworks that don't use #import to do so, e.g.
DirectoryService, AudioToolbox, CoreFoundation, etc. Why not using #import?
Because they work in C mode? C has #import.
* Have the lexer return a token for #import instead of handling it itself.
- Create a new preprocessor object with no external state (no -D/U options
from the command line, etc). Alternatively, keep track of exactly which
external state is used by a #import: declare it somehow.
* When having reading a #import file, keep track of whether we have (and/or
which) seen any "configuration" macros. Various cases:
- Uses of target args (__POWERPC__, __i386): Header has to be parsed
multiple times, per-target. What about #ifndef checks? How do we know?
- "Configuration" preprocessor macros not defined: POWERPC, etc. What about
things like __STDC__ etc? What is and what isn't allowed.
* Special handling for "umbrella" headers, which just contain #import stmts:
- Cocoa.h/AppKit.h - Contain pointers to digests instead of entire digests
themselves? Foundation.h isn't pure umbrella!
* Frameworks digests:
- Can put "digest" of a framework-worth of headers into the framework
itself. To open AppKit, just mmap
/System/Library/Frameworks/AppKit.framework/"digest", which provides a
symbol table in a well defined format. Lazily unstream stuff that is
needed. Contains declarations, macros, and debug information.
- System frameworks ship with digests. How do we handle configuration
information? How do we handle stuff like:
#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_2
which guards a bunch of decls? Should there be a couple of default
configs, then have the UI fall back to building/caching its own?
- GUI automatically builds digests when UI is idle, both of system
frameworks if they aren't not available in the right config, and of app
frameworks.
- GUI builds dependence graph of frameworks/digests based on #imports. If a
digest is out date, dependent digests are automatically invalidated.
* New constraints on #import for objc-v3:
- #imported file must not define non-inline function bodies.
- Alternatively, they can, and these bodies get compiled/linked *once*
per app into a dylib. What about building user dylibs?
- Restrictions on ObjC grammar: can't #import the body of a for stmt or fn.
- Compiler must detect and reject these cases.
- #defines defined within a #import have two behaviors:
- By default, they escape the header. These macros *cannot* be #undef'd
by other code: this is enforced by the front-end.
- Optionally, user can specify what macros escape (whitelist) or can use
#undef.
//===---------------------------------------------------------------------===//
TODO: New language feature: Configuration queries:
- Instead of #ifdef __POWERPC__, use "if (strcmp(`cpu`, __POWERPC__))", or
some other, better, syntax.
- Use it to increase the number of "architecture-clean" #import'd files,
allowing a single index to be used for all fat slices.
//===---------------------------------------------------------------------===//
The 'portability' model in clang is sufficient to catch translation units (or
their parts) that are not portable, but it doesn't help if the system headers
are non-portable and not fixed. An alternative model that would be easy to use
is a 'tainting' scheme. Consider:
int32_t
OSHostByteOrder(void) {
#if defined(__LITTLE_ENDIAN__)
return OSLittleEndian;
#elif defined(__BIG_ENDIAN__)
return OSBigEndian;
#else
return OSUnknownByteOrder;
#endif
}
It would be trivial to mark 'OSHostByteOrder' as being non-portable (tainted)
instead of marking the entire translation unit. Then, if OSHostByteOrder is
never called/used by the current translation unit, the t-u wouldn't be marked
non-portable. However, there is no good way to handle stuff like:
extern int X, Y;
#ifndef __POWERPC__
#define X Y
#endif
int bar() { return X; }
When compiling for powerpc, the #define is skipped, so it doesn't know that bar
uses a #define that is set on some other target. In practice, limited cases
could be handled by scanning the skipped region of a #if, but the fully general
case cannot be implemented efficiently. In this case, for example, the #define
in the protected region could be turned into either a #define_target or
#define_other_target as appropriate. The harder case is code like this (from
OSByteOrder.h):
#if (defined(__ppc__) || defined(__ppc64__))
#include <libkern/ppc/OSByteOrder.h>
#elif (defined(__i386__) || defined(__x86_64__))
#include <libkern/i386/OSByteOrder.h>
#else
#include <libkern/machine/OSByteOrder.h>
#endif
The realistic way to fix this is by having an initial #ifdef __llvm__ that
defines its contents in terms of the llvm bswap intrinsics. Other things should
be handled on a case-by-case basis.
We probably have to do something smarter like this in the future. The C++ header
<limits> contains a lot of code like this:
static const int digits10 = __LDBL_DIG__;
static const int min_exponent = __LDBL_MIN_EXP__;
static const int min_exponent10 = __LDBL_MIN_10_EXP__;
static const float_denorm_style has_denorm
= bool(__LDBL_DENORM_MIN__) ? denorm_present : denorm_absent;
... since this isn't being used in an #ifdef, it should be easy enough to taint
the decl for these ivars.
/usr/include/sys/cdefs.h contains stuff like this:
#if defined(__ppc__)
# if defined(__LDBL_MANT_DIG__) && defined(__DBL_MANT_DIG__) && \
__LDBL_MANT_DIG__ > __DBL_MANT_DIG__
# if __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__-0 < 1040
# define __DARWIN_LDBL_COMPAT(x) __asm("_" __STRING(x) "$LDBLStub")
# else
# define __DARWIN_LDBL_COMPAT(x) __asm("_" __STRING(x) "$LDBL128")
# endif
# define __DARWIN_LDBL_COMPAT2(x) __asm("_" __STRING(x) "$LDBL128")
# define __DARWIN_LONG_DOUBLE_IS_DOUBLE 0
# else
# define __DARWIN_LDBL_COMPAT(x) /* nothing */
# define __DARWIN_LDBL_COMPAT2(x) /* nothing */
# define __DARWIN_LONG_DOUBLE_IS_DOUBLE 1
# endif
#elif defined(__i386__) || defined(__ppc64__) || defined(__x86_64__)
# define __DARWIN_LDBL_COMPAT(x) /* nothing */
# define __DARWIN_LDBL_COMPAT2(x) /* nothing */
# define __DARWIN_LONG_DOUBLE_IS_DOUBLE 0
#else
# error Unknown architecture
#endif
An ideal way to solve this issue is to mark __DARWIN_LDBL_COMPAT /
__DARWIN_LDBL_COMPAT2 / __DARWIN_LONG_DOUBLE_IS_DOUBLE as being non-portable
because they depend on non-portable macros. In practice though, this may end
up being a serious problem: every use of printf will mark the translation unit
non-portable if targetting ppc32 and something else.
//===---------------------------------------------------------------------===//

View File

@@ -1,27 +0,0 @@
//===--- AttributeList.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Steve Naroff and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the AttributeList class implementation
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/AttributeList.h"
#include "clang/Lex/IdentifierTable.h"
using namespace clang;
AttributeList::AttributeList(IdentifierInfo *aName, SourceLocation aLoc,
IdentifierInfo *pName, SourceLocation pLoc,
Action::ExprTy **elist, unsigned numargs,
AttributeList *n)
: AttrName(aName), AttrLoc(aLoc), ParmName(pName), ParmLoc(pLoc),
NumArgs(numargs), Next(n) {
Args = new Action::ExprTy*[numargs];
for (unsigned i = 0; i != numargs; ++i)
Args[i] = elist[i];
}

View File

@@ -1,286 +0,0 @@
//===--- SemaDeclSpec.cpp - Declaration Specifier Semantic Analysis -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declaration specifiers.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/DeclSpec.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
using namespace clang;
/// getParsedSpecifiers - Return a bitmask of which flavors of specifiers this
///
unsigned DeclSpec::getParsedSpecifiers() const {
unsigned Res = 0;
if (StorageClassSpec != SCS_unspecified ||
SCS_thread_specified)
Res |= PQ_StorageClassSpecifier;
if (TypeQualifiers != TQ_unspecified)
Res |= PQ_TypeQualifier;
if (hasTypeSpecifier())
Res |= PQ_TypeSpecifier;
if (FS_inline_specified)
Res |= PQ_FunctionSpecifier;
return Res;
}
const char *DeclSpec::getSpecifierName(DeclSpec::SCS S) {
switch (S) {
default: assert(0 && "Unknown typespec!");
case DeclSpec::SCS_unspecified: return "unspecified";
case DeclSpec::SCS_typedef: return "typedef";
case DeclSpec::SCS_extern: return "extern";
case DeclSpec::SCS_static: return "static";
case DeclSpec::SCS_auto: return "auto";
case DeclSpec::SCS_register: return "register";
}
}
static bool BadSpecifier(DeclSpec::SCS S, const char *&PrevSpec) {
PrevSpec = DeclSpec::getSpecifierName(S);
return true;
}
static bool BadSpecifier(DeclSpec::TSW W, const char *&PrevSpec) {
switch (W) {
case DeclSpec::TSW_unspecified: PrevSpec = "unspecified"; break;
case DeclSpec::TSW_short: PrevSpec = "short"; break;
case DeclSpec::TSW_long: PrevSpec = "long"; break;
case DeclSpec::TSW_longlong: PrevSpec = "long long"; break;
}
return true;
}
static bool BadSpecifier(DeclSpec::TSC C, const char *&PrevSpec) {
switch (C) {
case DeclSpec::TSC_unspecified: PrevSpec = "unspecified"; break;
case DeclSpec::TSC_imaginary: PrevSpec = "imaginary"; break;
case DeclSpec::TSC_complex: PrevSpec = "complex"; break;
}
return true;
}
static bool BadSpecifier(DeclSpec::TSS S, const char *&PrevSpec) {
switch (S) {
case DeclSpec::TSS_unspecified: PrevSpec = "unspecified"; break;
case DeclSpec::TSS_signed: PrevSpec = "signed"; break;
case DeclSpec::TSS_unsigned: PrevSpec = "unsigned"; break;
}
return true;
}
const char *DeclSpec::getSpecifierName(DeclSpec::TST T) {
switch (T) {
default: assert(0 && "Unknown typespec!");
case DeclSpec::TST_unspecified: return "unspecified";
case DeclSpec::TST_void: return "void";
case DeclSpec::TST_char: return "char";
case DeclSpec::TST_int: return "int";
case DeclSpec::TST_float: return "float";
case DeclSpec::TST_double: return "double";
case DeclSpec::TST_bool: return "_Bool";
case DeclSpec::TST_decimal32: return "_Decimal32";
case DeclSpec::TST_decimal64: return "_Decimal64";
case DeclSpec::TST_decimal128: return "_Decimal128";
case DeclSpec::TST_enum: return "enum";
case DeclSpec::TST_union: return "union";
case DeclSpec::TST_struct: return "struct";
case DeclSpec::TST_typedef: return "typedef";
case DeclSpec::TST_typeofType:
case DeclSpec::TST_typeofExpr: return "typeof";
}
}
static bool BadSpecifier(DeclSpec::TST T, const char *&PrevSpec) {
PrevSpec = DeclSpec::getSpecifierName(T);
return true;
}
static bool BadSpecifier(DeclSpec::TQ T, const char *&PrevSpec) {
switch (T) {
case DeclSpec::TQ_unspecified: PrevSpec = "unspecified"; break;
case DeclSpec::TQ_const: PrevSpec = "const"; break;
case DeclSpec::TQ_restrict: PrevSpec = "restrict"; break;
case DeclSpec::TQ_volatile: PrevSpec = "volatile"; break;
}
return true;
}
bool DeclSpec::SetStorageClassSpec(SCS S, SourceLocation Loc,
const char *&PrevSpec) {
if (StorageClassSpec != SCS_unspecified)
return BadSpecifier(StorageClassSpec, PrevSpec);
StorageClassSpec = S;
StorageClassSpecLoc = Loc;
return false;
}
bool DeclSpec::SetStorageClassSpecThread(SourceLocation Loc,
const char *&PrevSpec) {
if (SCS_thread_specified) {
PrevSpec = "__thread";
return true;
}
SCS_thread_specified = true;
SCS_threadLoc = Loc;
return false;
}
/// These methods set the specified attribute of the DeclSpec, but return true
/// and ignore the request if invalid (e.g. "extern" then "auto" is
/// specified).
bool DeclSpec::SetTypeSpecWidth(TSW W, SourceLocation Loc,
const char *&PrevSpec) {
if (TypeSpecWidth != TSW_unspecified &&
// Allow turning long -> long long.
(W != TSW_longlong || TypeSpecWidth != TSW_long))
return BadSpecifier(TypeSpecWidth, PrevSpec);
TypeSpecWidth = W;
TSWLoc = Loc;
return false;
}
bool DeclSpec::SetTypeSpecComplex(TSC C, SourceLocation Loc,
const char *&PrevSpec) {
if (TypeSpecComplex != TSC_unspecified)
return BadSpecifier(TypeSpecComplex, PrevSpec);
TypeSpecComplex = C;
TSCLoc = Loc;
return false;
}
bool DeclSpec::SetTypeSpecSign(TSS S, SourceLocation Loc,
const char *&PrevSpec) {
if (TypeSpecSign != TSS_unspecified)
return BadSpecifier(TypeSpecSign, PrevSpec);
TypeSpecSign = S;
TSSLoc = Loc;
return false;
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
const char *&PrevSpec, void *Rep) {
if (TypeSpecType != TST_unspecified)
return BadSpecifier(TypeSpecType, PrevSpec);
TypeSpecType = T;
TypeRep = Rep;
TSTLoc = Loc;
return false;
}
bool DeclSpec::SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
const LangOptions &Lang) {
// Duplicates turn into warnings pre-C99.
if ((TypeQualifiers & T) && !Lang.C99)
return BadSpecifier(T, PrevSpec);
TypeQualifiers |= T;
switch (T) {
default: assert(0 && "Unknown type qualifier!");
case TQ_const: TQ_constLoc = Loc; break;
case TQ_restrict: TQ_restrictLoc = Loc; break;
case TQ_volatile: TQ_volatileLoc = Loc; break;
}
return false;
}
bool DeclSpec::SetFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec){
// 'inline inline' is ok.
FS_inline_specified = true;
FS_inlineLoc = Loc;
return false;
}
/// Finish - This does final analysis of the declspec, rejecting things like
/// "_Imaginary" (lacking an FP type). This returns a diagnostic to issue or
/// diag::NUM_DIAGNOSTICS if there is no error. After calling this method,
/// DeclSpec is guaranteed self-consistent, even if an error occurred.
void DeclSpec::Finish(Diagnostic &D, const LangOptions &Lang) {
// Check the type specifier components first.
// signed/unsigned are only valid with int/char.
if (TypeSpecSign != TSS_unspecified) {
if (TypeSpecType == TST_unspecified)
TypeSpecType = TST_int; // unsigned -> unsigned int, signed -> signed int.
else if (TypeSpecType != TST_int && TypeSpecType != TST_char) {
Diag(D, TSSLoc, diag::err_invalid_sign_spec,
getSpecifierName(TypeSpecType));
// signed double -> double.
TypeSpecSign = TSS_unspecified;
}
}
// Validate the width of the type.
switch (TypeSpecWidth) {
case TSW_unspecified: break;
case TSW_short: // short int
case TSW_longlong: // long long int
if (TypeSpecType == TST_unspecified)
TypeSpecType = TST_int; // short -> short int, long long -> long long int.
else if (TypeSpecType != TST_int) {
Diag(D, TSWLoc,
TypeSpecWidth == TSW_short ? diag::err_invalid_short_spec
: diag::err_invalid_longlong_spec,
getSpecifierName(TypeSpecType));
TypeSpecType = TST_int;
}
break;
case TSW_long: // long double, long int
if (TypeSpecType == TST_unspecified)
TypeSpecType = TST_int; // long -> long int.
else if (TypeSpecType != TST_int && TypeSpecType != TST_double) {
Diag(D, TSWLoc, diag::err_invalid_long_spec,
getSpecifierName(TypeSpecType));
TypeSpecType = TST_int;
}
break;
}
// TODO: if the implementation does not implement _Complex or _Imaginary,
// disallow their use. Need information about the backend.
if (TypeSpecComplex != TSC_unspecified) {
if (TypeSpecType == TST_unspecified) {
Diag(D, TSCLoc, diag::ext_plain_complex);
TypeSpecType = TST_double; // _Complex -> _Complex double.
} else if (TypeSpecType == TST_int || TypeSpecType == TST_char) {
// Note that this intentionally doesn't include _Complex _Bool.
Diag(D, TSTLoc, diag::ext_integer_complex);
} else if (TypeSpecType != TST_float && TypeSpecType != TST_double) {
Diag(D, TSCLoc, diag::err_invalid_complex_spec,
getSpecifierName(TypeSpecType));
TypeSpecComplex = TSC_unspecified;
}
}
// Verify __thread.
if (SCS_thread_specified) {
if (StorageClassSpec == SCS_unspecified) {
StorageClassSpec = SCS_extern; // '__thread int' -> 'extern __thread int'
} else if (StorageClassSpec != SCS_extern &&
StorageClassSpec != SCS_static) {
Diag(D, getStorageClassSpecLoc(), diag::err_invalid_thread_spec,
getSpecifierName(StorageClassSpec));
SCS_thread_specified = false;
}
}
// Okay, now we can infer the real type.
// TODO: return "auto function" and other bad things based on the real type.
// 'data definition has no type or storage class'?
}

View File

@@ -1,22 +0,0 @@
##===- clang/Parse/Makefile --------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Chris Lattner and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements the Parser library for the C-Language front-end.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME := clangParse
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,116 +0,0 @@
//===--- MinimalAction.cpp - Implement the MinimalAction class ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MinimalAction interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;
/// TypeNameInfo - A link exists here for each scope that an identifier is
/// defined.
struct TypeNameInfo {
TypeNameInfo *Prev;
bool isTypeName;
TypeNameInfo(bool istypename, TypeNameInfo *prev) {
isTypeName = istypename;
Prev = prev;
}
};
/// isTypeName - This looks at the IdentifierInfo::FETokenInfo field to
/// determine whether the name is a type name (objc class name or typedef) or
/// not in this scope.
Action::DeclTy *
MinimalAction::isTypeName(const IdentifierInfo &II, Scope *S) const {
if (TypeNameInfo *TI = II.getFETokenInfo<TypeNameInfo>())
if (TI->isTypeName)
return TI;
return 0;
}
/// ParseDeclarator - If this is a typedef declarator, we modify the
/// IdentifierInfo::FETokenInfo field to keep track of this fact, until S is
/// popped.
Action::DeclTy *
MinimalAction::ParseDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup) {
IdentifierInfo *II = D.getIdentifier();
// If there is no identifier associated with this declarator, bail out.
if (II == 0) return 0;
TypeNameInfo *weCurrentlyHaveTypeInfo = II->getFETokenInfo<TypeNameInfo>();
bool isTypeName =
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef;
// this check avoids creating TypeNameInfo objects for the common case.
// It does need to handle the uncommon case of shadowing a typedef name with a
// non-typedef name. e.g. { typedef int a; a xx; { int a; } }
if (weCurrentlyHaveTypeInfo || isTypeName) {
TypeNameInfo *TI = new TypeNameInfo(isTypeName, weCurrentlyHaveTypeInfo);
II->setFETokenInfo(TI);
// Remember that this needs to be removed when the scope is popped.
S->AddDecl(II);
}
return 0;
}
Action::DeclTy *
MinimalAction::ObjcStartClassInterface(SourceLocation AtInterafceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
IdentifierInfo **ProtocolNames, unsigned NumProtocols,
AttributeList *AttrList) {
TypeNameInfo *TI =
new TypeNameInfo(1, ClassName->getFETokenInfo<TypeNameInfo>());
ClassName->setFETokenInfo(TI);
return 0;
}
/// ObjcClassDeclaration -
/// Scope will always be top level file scope.
Action::DeclTy *
MinimalAction::ObjcClassDeclaration(Scope *S, SourceLocation AtClassLoc,
IdentifierInfo **IdentList, unsigned NumElts) {
for (unsigned i = 0; i != NumElts; ++i) {
TypeNameInfo *TI =
new TypeNameInfo(1, IdentList[i]->getFETokenInfo<TypeNameInfo>());
IdentList[i]->setFETokenInfo(TI);
// Remember that this needs to be removed when the scope is popped.
S->AddDecl(IdentList[i]);
}
return 0;
}
/// PopScope - When a scope is popped, if any typedefs are now out-of-scope,
/// they are removed from the IdentifierInfo::FETokenInfo field.
void MinimalAction::PopScope(SourceLocation Loc, Scope *S) {
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
I != E; ++I) {
IdentifierInfo &II = *static_cast<IdentifierInfo*>(*I);
TypeNameInfo *TI = II.getFETokenInfo<TypeNameInfo>();
assert(TI && "This decl didn't get pushed??");
if (TI) {
TypeNameInfo *Next = TI->Prev;
delete TI;
II.setFETokenInfo(Next);
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,82 +0,0 @@
//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/Scope.h"
#include "clang/Basic/Diagnostic.h"
using namespace clang;
/// ParseNamespace - We know that the current token is a namespace keyword. This
/// may either be a top level namespace or a block-level namespace alias.
///
/// namespace-definition: [C++ 7.3: basic.namespace]
/// named-namespace-definition
/// unnamed-namespace-definition
///
/// unnamed-namespace-definition:
/// 'namespace' attributes[opt] '{' namespace-body '}'
///
/// named-namespace-definition:
/// original-namespace-definition
/// extension-namespace-definition
///
/// original-namespace-definition:
/// 'namespace' identifier attributes[opt] '{' namespace-body '}'
///
/// extension-namespace-definition:
/// 'namespace' original-namespace-name '{' namespace-body '}'
///
/// namespace-alias-definition: [C++ 7.3.2: namespace.alias]
/// 'namespace' identifier '=' qualified-namespace-specifier ';'
///
Parser::DeclTy *Parser::ParseNamespace(unsigned Context) {
assert(Tok.getKind() == tok::kw_namespace && "Not a namespace!");
SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'.
SourceLocation IdentLoc;
IdentifierInfo *Ident = 0;
if (Tok.getKind() == tok::identifier) {
Ident = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken(); // eat the identifier.
}
// Read label attributes, if present.
DeclTy *AttrList = 0;
if (Tok.getKind() == tok::kw___attribute)
// FIXME: save these somewhere.
AttrList = ParseAttributes();
if (Tok.getKind() == tok::equal) {
// FIXME: Verify no attributes were present.
// FIXME: parse this.
} else if (Tok.getKind() == tok::l_brace) {
SourceLocation LBrace = ConsumeBrace();
// FIXME: push a scope, push a namespace decl.
while (Tok.getKind() != tok::r_brace && Tok.getKind() != tok::eof) {
// FIXME capture the decls.
ParseExternalDeclaration();
}
SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace);
// FIXME: act on this.
} else {
unsigned D = Ident ? diag::err_expected_lbrace :
diag::err_expected_ident_lbrace;
Diag(Tok.getLocation(), D);
}
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,78 +0,0 @@
//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Diagnostic.h"
#include "clang/Parse/Parser.h"
using namespace clang;
/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
/// postfix-expression: [C++ 5.2p1]
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
/// 'static_cast' '<' type-name '>' '(' expression ')'
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
/// 'const_cast' '<' type-name '>' '(' expression ')'
///
Parser::ExprResult Parser::ParseCXXCasts() {
tok::TokenKind Kind = Tok.getKind();
const char *CastName = 0; // For error messages
switch (Kind) {
default: assert(0 && "Unknown C++ cast!"); abort();
case tok::kw_const_cast: CastName = "const_cast"; break;
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
case tok::kw_static_cast: CastName = "static_cast"; break;
}
SourceLocation OpLoc = ConsumeToken();
SourceLocation LAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
return ExprResult(true);
TypeTy *CastTy = ParseTypeName();
SourceLocation RAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::greater, diag::err_expected_greater)) {
Diag(LAngleBracketLoc, diag::err_matching, "<");
return ExprResult(true);
}
SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, CastName);
return ExprResult(true);
}
ExprResult Result = ParseSimpleParenExpression(RParenLoc);
if (!Result.isInvalid)
Result = Actions.ParseCXXCasts(OpLoc, Kind,
LAngleBracketLoc, CastTy, RAngleBracketLoc,
LParenLoc, Result.Val, RParenLoc);
return Result;
}
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
/// boolean-literal: [C++ 2.13.5]
/// 'true'
/// 'false'
Parser::ExprResult Parser::ParseCXXBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Actions.ParseCXXBoolLiteral(ConsumeToken(), Kind);
}

View File

@@ -1,199 +0,0 @@
//===--- ParseInit.cpp - Initializer Parsing ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements initializer parsing as specified by C99 6.7.8.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;
/// MayBeDesignationStart - Return true if this token might be the start of a
/// designator.
static bool MayBeDesignationStart(tok::TokenKind K) {
switch (K) {
default: return false;
case tok::period: // designator: '.' identifier
case tok::l_square: // designator: array-designator
case tok::identifier: // designation: identifier ':'
return true;
}
}
/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
/// checking to see if the token stream starts with a designator.
///
/// designation:
/// designator-list '='
/// [GNU] array-designator
/// [GNU] identifier ':'
///
/// designator-list:
/// designator
/// designator-list designator
///
/// designator:
/// array-designator
/// '.' identifier
///
/// array-designator:
/// '[' constant-expression ']'
/// [GNU] '[' constant-expression '...' constant-expression ']'
///
/// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
/// initializer. We need to consider this case when parsing array designators.
///
Parser::ExprResult Parser::ParseInitializerWithPotentialDesignator() {
// Parse each designator in the designator list until we find an initializer.
while (1) {
switch (Tok.getKind()) {
case tok::equal:
// We read some number (at least one due to the grammar we implemented)
// of designators and found an '=' sign. The following tokens must be
// the initializer.
ConsumeToken();
return ParseInitializer();
default: {
// We read some number (at least one due to the grammar we implemented)
// of designators and found something that isn't an = or an initializer.
// If we have exactly one array designator [TODO CHECK], this is the GNU
// 'designation: array-designator' extension. Otherwise, it is a parse
// error.
SourceLocation Loc = Tok.getLocation();
ExprResult Init = ParseInitializer();
if (Init.isInvalid) return Init;
Diag(Tok, diag::ext_gnu_missing_equal_designator);
return Init;
}
case tok::period:
// designator: '.' identifier
ConsumeToken();
if (ExpectAndConsume(tok::identifier, diag::err_expected_ident))
return ExprResult(true);
break;
case tok::l_square: {
// array-designator: '[' constant-expression ']'
// array-designator: '[' constant-expression '...' constant-expression ']'
SourceLocation StartLoc = ConsumeBracket();
ExprResult Idx = ParseConstantExpression();
if (Idx.isInvalid) {
SkipUntil(tok::r_square);
return Idx;
}
// Handle the gnu array range extension.
if (Tok.getKind() == tok::ellipsis) {
Diag(Tok, diag::ext_gnu_array_range);
ConsumeToken();
ExprResult RHS = ParseConstantExpression();
if (RHS.isInvalid) {
SkipUntil(tok::r_square);
return RHS;
}
}
MatchRHSPunctuation(tok::r_square, StartLoc);
break;
}
case tok::identifier: {
// Due to the GNU "designation: identifier ':'" extension, we don't know
// whether something starting with an identifier is an
// assignment-expression or if it is an old-style structure field
// designator.
// TODO: Check that this is the first designator.
Token Ident = Tok;
ConsumeToken();
// If this is the gross GNU extension, handle it now.
if (Tok.getKind() == tok::colon) {
Diag(Ident, diag::ext_gnu_old_style_field_designator);
ConsumeToken();
return ParseInitializer();
}
// Otherwise, we just consumed the first token of an expression. Parse
// the rest of it now.
return ParseAssignmentExprWithLeadingIdentifier(Ident);
}
}
}
}
/// ParseInitializer
/// initializer: [C99 6.7.8]
/// assignment-expression
/// '{' initializer-list '}'
/// '{' initializer-list ',' '}'
/// [GNU] '{' '}'
///
/// initializer-list:
/// designation[opt] initializer
/// initializer-list ',' designation[opt] initializer
///
Parser::ExprResult Parser::ParseInitializer() {
if (Tok.getKind() != tok::l_brace)
return ParseAssignmentExpression();
SourceLocation LBraceLoc = ConsumeBrace();
// We support empty initializers, but tell the user that they aren't using
// C99-clean code.
if (Tok.getKind() == tok::r_brace) {
Diag(LBraceLoc, diag::ext_gnu_empty_initializer);
// Match the '}'.
return Actions.ParseInitList(LBraceLoc, 0, 0, ConsumeBrace());
}
llvm::SmallVector<ExprTy*, 8> InitExprs;
bool InitExprsOk = true;
while (1) {
// Parse: designation[opt] initializer
// If we know that this cannot be a designation, just parse the nested
// initializer directly.
ExprResult SubElt;
if (!MayBeDesignationStart(Tok.getKind()))
SubElt = ParseInitializer();
else
SubElt = ParseInitializerWithPotentialDesignator();
// If we couldn't parse the subelement, bail out.
if (SubElt.isInvalid) {
InitExprsOk = false;
SkipUntil(tok::r_brace);
break;
} else
InitExprs.push_back(SubElt.Val);
// If we don't have a comma continued list, we're done.
if (Tok.getKind() != tok::comma) break;
// FIXME: save comma locations.
ConsumeToken();
// Handle trailing comma.
if (Tok.getKind() == tok::r_brace) break;
}
if (InitExprsOk && Tok.getKind() == tok::r_brace)
return Actions.ParseInitList(LBraceLoc, &InitExprs[0], InitExprs.size(),
ConsumeBrace());
// Match the '}'.
MatchRHSPunctuation(tok::r_brace, LBraceLoc);
return ExprResult(true); // an error occurred.
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,978 +0,0 @@
//===--- ParseStmt.cpp - Statement and Block Parser -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Statement and Block portions of the Parser
// interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.8: Statements and Blocks.
//===----------------------------------------------------------------------===//
/// ParseStatementOrDeclaration - Read 'statement' or 'declaration'.
/// StatementOrDeclaration:
/// statement
/// declaration
///
/// statement:
/// labeled-statement
/// compound-statement
/// expression-statement
/// selection-statement
/// iteration-statement
/// jump-statement
/// [OBC] objc-throw-statement [TODO]
/// [OBC] objc-try-catch-statement [TODO]
/// [OBC] objc-synchronized-statement [TODO]
/// [GNU] asm-statement
/// [OMP] openmp-construct [TODO]
///
/// labeled-statement:
/// identifier ':' statement
/// 'case' constant-expression ':' statement
/// 'default' ':' statement
///
/// selection-statement:
/// if-statement
/// switch-statement
///
/// iteration-statement:
/// while-statement
/// do-statement
/// for-statement
///
/// expression-statement:
/// expression[opt] ';'
///
/// jump-statement:
/// 'goto' identifier ';'
/// 'continue' ';'
/// 'break' ';'
/// 'return' expression[opt] ';'
/// [GNU] 'goto' '*' expression ';'
///
/// [OBC] objc-throw-statement: [TODO]
/// [OBC] '@' 'throw' expression ';' [TODO]
/// [OBC] '@' 'throw' ';' [TODO]
///
Parser::StmtResult Parser::ParseStatementOrDeclaration(bool OnlyStatement) {
const char *SemiError = 0;
Parser::StmtResult Res;
// Cases in this switch statement should fall through if the parser expects
// the token to end in a semicolon (in which case SemiError should be set),
// or they directly 'return;' if not.
switch (Tok.getKind()) {
case tok::identifier: // C99 6.8.1: labeled-statement
// identifier ':' statement
// declaration (if !OnlyStatement)
// expression[opt] ';'
return ParseIdentifierStatement(OnlyStatement);
default:
if (!OnlyStatement && isDeclarationSpecifier()) {
return Actions.ParseDeclStmt(ParseDeclaration(Declarator::BlockContext));
} else if (Tok.getKind() == tok::r_brace) {
Diag(Tok, diag::err_expected_statement);
return true;
} else {
// expression[opt] ';'
ExprResult Res = ParseExpression();
if (Res.isInvalid) {
// If the expression is invalid, skip ahead to the next semicolon. Not
// doing this opens us up to the possibility of infinite loops if
// ParseExpression does not consume any tokens.
SkipUntil(tok::semi);
return true;
}
// Otherwise, eat the semicolon.
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_expr);
return Actions.ParseExprStmt(Res.Val);
}
case tok::kw_case: // C99 6.8.1: labeled-statement
return ParseCaseStatement();
case tok::kw_default: // C99 6.8.1: labeled-statement
return ParseDefaultStatement();
case tok::l_brace: // C99 6.8.2: compound-statement
return ParseCompoundStatement();
case tok::semi: // C99 6.8.3p3: expression[opt] ';'
return Actions.ParseNullStmt(ConsumeToken());
case tok::kw_if: // C99 6.8.4.1: if-statement
return ParseIfStatement();
case tok::kw_switch: // C99 6.8.4.2: switch-statement
return ParseSwitchStatement();
case tok::kw_while: // C99 6.8.5.1: while-statement
return ParseWhileStatement();
case tok::kw_do: // C99 6.8.5.2: do-statement
Res = ParseDoStatement();
SemiError = "do/while loop";
break;
case tok::kw_for: // C99 6.8.5.3: for-statement
return ParseForStatement();
case tok::kw_goto: // C99 6.8.6.1: goto-statement
Res = ParseGotoStatement();
SemiError = "goto statement";
break;
case tok::kw_continue: // C99 6.8.6.2: continue-statement
Res = ParseContinueStatement();
SemiError = "continue statement";
break;
case tok::kw_break: // C99 6.8.6.3: break-statement
Res = ParseBreakStatement();
SemiError = "break statement";
break;
case tok::kw_return: // C99 6.8.6.4: return-statement
Res = ParseReturnStatement();
SemiError = "return statement";
break;
case tok::kw_asm:
Res = ParseAsmStatement();
SemiError = "asm statement";
break;
}
// If we reached this code, the statement must end in a semicolon.
if (Tok.getKind() == tok::semi) {
ConsumeToken();
} else {
Diag(Tok, diag::err_expected_semi_after, SemiError);
SkipUntil(tok::semi);
}
return Res;
}
/// ParseIdentifierStatement - Because we don't have two-token lookahead, we
/// have a bit of a quandry here. Reading the identifier is necessary to see if
/// there is a ':' after it. If there is, this is a label, regardless of what
/// else the identifier can mean. If not, this is either part of a declaration
/// (if the identifier is a type-name) or part of an expression.
///
/// labeled-statement:
/// identifier ':' statement
/// [GNU] identifier ':' attributes[opt] statement
/// declaration (if !OnlyStatement)
/// expression[opt] ';'
///
Parser::StmtResult Parser::ParseIdentifierStatement(bool OnlyStatement) {
assert(Tok.getKind() == tok::identifier && Tok.getIdentifierInfo() &&
"Not an identifier!");
Token IdentTok = Tok; // Save the whole token.
ConsumeToken(); // eat the identifier.
// identifier ':' statement
if (Tok.getKind() == tok::colon) {
SourceLocation ColonLoc = ConsumeToken();
// Read label attributes, if present.
DeclTy *AttrList = 0;
if (Tok.getKind() == tok::kw___attribute)
// TODO: save these somewhere.
AttrList = ParseAttributes();
StmtResult SubStmt = ParseStatement();
// Broken substmt shouldn't prevent the label from being added to the AST.
if (SubStmt.isInvalid)
SubStmt = Actions.ParseNullStmt(ColonLoc);
return Actions.ParseLabelStmt(IdentTok.getLocation(),
IdentTok.getIdentifierInfo(),
ColonLoc, SubStmt.Val);
}
// Check to see if this is a declaration.
void *TypeRep;
if (!OnlyStatement &&
(TypeRep = Actions.isTypeName(*IdentTok.getIdentifierInfo(), CurScope))) {
// Handle this. Warn/disable if in middle of block and !C99.
DeclSpec DS;
// Add the typedef name to the start of the decl-specs.
const char *PrevSpec = 0;
int isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef,
IdentTok.getLocation(), PrevSpec,
TypeRep);
assert(!isInvalid && "First declspec can't be invalid!");
// ParseDeclarationSpecifiers will continue from there.
ParseDeclarationSpecifiers(DS);
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.getKind() == tok::semi) {
// TODO: emit error on 'int;' or 'const enum foo;'.
// if (!DS.isMissingDeclaratorOk()) Diag(...);
ConsumeToken();
// FIXME: Return this as a type decl.
return 0;
}
// Parse all the declarators.
Declarator DeclaratorInfo(DS, Declarator::BlockContext);
ParseDeclarator(DeclaratorInfo);
DeclTy *Decl = ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
return Decl ? Actions.ParseDeclStmt(Decl) : 0;
}
// Otherwise, this is an expression. Seed it with II and parse it.
ExprResult Res = ParseExpressionWithLeadingIdentifier(IdentTok);
if (Res.isInvalid) {
SkipUntil(tok::semi);
return true;
} else if (Tok.getKind() != tok::semi) {
Diag(Tok, diag::err_expected_semi_after, "expression");
SkipUntil(tok::semi);
return true;
} else {
ConsumeToken();
// Convert expr to a stmt.
return Actions.ParseExprStmt(Res.Val);
}
}
/// ParseCaseStatement
/// labeled-statement:
/// 'case' constant-expression ':' statement
/// [GNU] 'case' constant-expression '...' constant-expression ':' statement
///
/// Note that this does not parse the 'statement' at the end.
///
Parser::StmtResult Parser::ParseCaseStatement() {
assert(Tok.getKind() == tok::kw_case && "Not a case stmt!");
SourceLocation CaseLoc = ConsumeToken(); // eat the 'case'.
ExprResult LHS = ParseConstantExpression();
if (LHS.isInvalid) {
SkipUntil(tok::colon);
return true;
}
// GNU case range extension.
SourceLocation DotDotDotLoc;
ExprTy *RHSVal = 0;
if (Tok.getKind() == tok::ellipsis) {
Diag(Tok, diag::ext_gnu_case_range);
DotDotDotLoc = ConsumeToken();
ExprResult RHS = ParseConstantExpression();
if (RHS.isInvalid) {
SkipUntil(tok::colon);
return true;
}
RHSVal = RHS.Val;
}
if (Tok.getKind() != tok::colon) {
Diag(Tok, diag::err_expected_colon_after, "'case'");
SkipUntil(tok::colon);
return true;
}
SourceLocation ColonLoc = ConsumeToken();
// Diagnose the common error "switch (X) { case 4: }", which is not valid.
if (Tok.getKind() == tok::r_brace) {
Diag(Tok, diag::err_label_end_of_compound_statement);
return true;
}
StmtResult SubStmt = ParseStatement();
// Broken substmt shouldn't prevent the case from being added to the AST.
if (SubStmt.isInvalid)
SubStmt = Actions.ParseNullStmt(ColonLoc);
return Actions.ParseCaseStmt(CaseLoc, LHS.Val, DotDotDotLoc, RHSVal, ColonLoc,
SubStmt.Val);
}
/// ParseDefaultStatement
/// labeled-statement:
/// 'default' ':' statement
/// Note that this does not parse the 'statement' at the end.
///
Parser::StmtResult Parser::ParseDefaultStatement() {
assert(Tok.getKind() == tok::kw_default && "Not a default stmt!");
SourceLocation DefaultLoc = ConsumeToken(); // eat the 'default'.
if (Tok.getKind() != tok::colon) {
Diag(Tok, diag::err_expected_colon_after, "'default'");
SkipUntil(tok::colon);
return true;
}
SourceLocation ColonLoc = ConsumeToken();
// Diagnose the common error "switch (X) {... default: }", which is not valid.
if (Tok.getKind() == tok::r_brace) {
Diag(Tok, diag::err_label_end_of_compound_statement);
return true;
}
StmtResult SubStmt = ParseStatement();
if (SubStmt.isInvalid)
return true;
return Actions.ParseDefaultStmt(DefaultLoc, ColonLoc, SubStmt.Val, CurScope);
}
/// ParseCompoundStatement - Parse a "{}" block.
///
/// compound-statement: [C99 6.8.2]
/// { block-item-list[opt] }
/// [GNU] { label-declarations block-item-list } [TODO]
///
/// block-item-list:
/// block-item
/// block-item-list block-item
///
/// block-item:
/// declaration
/// [GNU] '__extension__' declaration
/// statement
/// [OMP] openmp-directive [TODO]
///
/// [GNU] label-declarations:
/// [GNU] label-declaration
/// [GNU] label-declarations label-declaration
///
/// [GNU] label-declaration:
/// [GNU] '__label__' identifier-list ';'
///
/// [OMP] openmp-directive: [TODO]
/// [OMP] barrier-directive
/// [OMP] flush-directive
///
Parser::StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) {
assert(Tok.getKind() == tok::l_brace && "Not a compount stmt!");
// Enter a scope to hold everything within the compound stmt. Compound
// statements can always hold declarations.
EnterScope(Scope::DeclScope);
// Parse the statements in the body.
StmtResult Body = ParseCompoundStatementBody(isStmtExpr);
ExitScope();
return Body;
}
/// ParseCompoundStatementBody - Parse a sequence of statements and invoke the
/// ParseCompoundStmt action. This expects the '{' to be the current token, and
/// consume the '}' at the end of the block. It does not manipulate the scope
/// stack.
Parser::StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
SourceLocation LBraceLoc = ConsumeBrace(); // eat the '{'.
// TODO: "__label__ X, Y, Z;" is the GNU "Local Label" extension. These are
// only allowed at the start of a compound stmt regardless of the language.
llvm::SmallVector<StmtTy*, 32> Stmts;
while (Tok.getKind() != tok::r_brace && Tok.getKind() != tok::eof) {
StmtResult R;
if (Tok.getKind() != tok::kw___extension__) {
R = ParseStatementOrDeclaration(false);
} else {
// __extension__ can start declarations and it can also be a unary
// operator for expressions. Consume multiple __extension__ markers here
// until we can determine which is which.
SourceLocation ExtLoc = ConsumeToken();
while (Tok.getKind() == tok::kw___extension__)
ConsumeToken();
// If this is the start of a declaration, parse it as such.
if (isDeclarationSpecifier()) {
// FIXME: Save the __extension__ on the decl as a node somehow.
// FIXME: disable extwarns.
R = Actions.ParseDeclStmt(ParseDeclaration(Declarator::BlockContext));
} else {
// Otherwise this was a unary __extension__ marker. Parse the
// subexpression and add the __extension__ unary op.
// FIXME: disable extwarns.
ExprResult Res = ParseCastExpression(false);
if (Res.isInvalid) {
SkipUntil(tok::semi);
continue;
}
// Add the __extension__ node to the AST.
Res = Actions.ParseUnaryOp(ExtLoc, tok::kw___extension__, Res.Val);
if (Res.isInvalid)
continue;
// Eat the semicolon at the end of stmt and convert the expr into a stmt.
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_expr);
R = Actions.ParseExprStmt(Res.Val);
}
}
if (!R.isInvalid && R.Val)
Stmts.push_back(R.Val);
}
// We broke out of the while loop because we found a '}' or EOF.
if (Tok.getKind() != tok::r_brace) {
Diag(Tok, diag::err_expected_rbrace);
return 0;
}
SourceLocation RBraceLoc = ConsumeBrace();
return Actions.ParseCompoundStmt(LBraceLoc, RBraceLoc,
&Stmts[0], Stmts.size(), isStmtExpr);
}
/// ParseIfStatement
/// if-statement: [C99 6.8.4.1]
/// 'if' '(' expression ')' statement
/// 'if' '(' expression ')' statement 'else' statement
///
Parser::StmtResult Parser::ParseIfStatement() {
assert(Tok.getKind() == tok::kw_if && "Not an if stmt!");
SourceLocation IfLoc = ConsumeToken(); // eat the 'if'.
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "if");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.4p3 - In C99, the if statement is a block. This is not
// the case for C90.
if (getLang().C99)
EnterScope(Scope::DeclScope);
// Parse the condition.
ExprResult CondExp = ParseSimpleParenExpression();
if (CondExp.isInvalid) {
SkipUntil(tok::semi);
if (getLang().C99)
ExitScope();
return true;
}
// C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.getKind() != tok::l_brace;
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the if condition.
StmtResult CondStmt = ParseStatement();
// Broken substmt shouldn't prevent the label from being added to the AST.
if (CondStmt.isInvalid)
CondStmt = Actions.ParseNullStmt(Tok.getLocation());
// Pop the 'if' scope if needed.
if (NeedsInnerScope) ExitScope();
// If it has an else, parse it.
SourceLocation ElseLoc;
StmtResult ElseStmt(false);
if (Tok.getKind() == tok::kw_else) {
ElseLoc = ConsumeToken();
// C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do
// this if the body isn't a compound statement to avoid push/pop in common
// cases.
NeedsInnerScope = getLang().C99 && Tok.getKind() != tok::l_brace;
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
ElseStmt = ParseStatement();
// Pop the 'else' scope if needed.
if (NeedsInnerScope) ExitScope();
if (ElseStmt.isInvalid)
ElseStmt = Actions.ParseNullStmt(ElseLoc);
}
if (getLang().C99)
ExitScope();
return Actions.ParseIfStmt(IfLoc, CondExp.Val, CondStmt.Val,
ElseLoc, ElseStmt.Val);
}
/// ParseSwitchStatement
/// switch-statement:
/// 'switch' '(' expression ')' statement
Parser::StmtResult Parser::ParseSwitchStatement() {
assert(Tok.getKind() == tok::kw_switch && "Not a switch stmt!");
SourceLocation SwitchLoc = ConsumeToken(); // eat the 'switch'.
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "switch");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.4p3 - In C99, the switch statement is a block. This is
// not the case for C90. Start the switch scope.
if (getLang().C99)
EnterScope(Scope::BreakScope|Scope::DeclScope);
else
EnterScope(Scope::BreakScope);
// Parse the condition.
ExprResult Cond = ParseSimpleParenExpression();
if (Cond.isInvalid) {
ExitScope();
return true;
}
StmtResult Switch = Actions.StartSwitchStmt(Cond.Val);
// C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.getKind() != tok::l_brace;
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
if (Body.isInvalid) {
Body = Actions.ParseNullStmt(Tok.getLocation());
// FIXME: Remove the case statement list from the Switch statement.
}
ExitScope();
return Actions.FinishSwitchStmt(SwitchLoc, Switch.Val, Body.Val);
}
/// ParseWhileStatement
/// while-statement: [C99 6.8.5.1]
/// 'while' '(' expression ')' statement
Parser::StmtResult Parser::ParseWhileStatement() {
assert(Tok.getKind() == tok::kw_while && "Not a while stmt!");
SourceLocation WhileLoc = Tok.getLocation();
ConsumeToken(); // eat the 'while'.
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "while");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.5p5 - In C99, the while statement is a block. This is not
// the case for C90. Start the loop scope.
if (getLang().C99)
EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope);
else
EnterScope(Scope::BreakScope | Scope::ContinueScope);
// Parse the condition.
ExprResult Cond = ParseSimpleParenExpression();
// C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.getKind() != tok::l_brace;
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
ExitScope();
if (Cond.isInvalid || Body.isInvalid) return true;
return Actions.ParseWhileStmt(WhileLoc, Cond.Val, Body.Val);
}
/// ParseDoStatement
/// do-statement: [C99 6.8.5.2]
/// 'do' statement 'while' '(' expression ')' ';'
/// Note: this lets the caller parse the end ';'.
Parser::StmtResult Parser::ParseDoStatement() {
assert(Tok.getKind() == tok::kw_do && "Not a do stmt!");
SourceLocation DoLoc = ConsumeToken(); // eat the 'do'.
// C99 6.8.5p5 - In C99, the do statement is a block. This is not
// the case for C90. Start the loop scope.
if (getLang().C99)
EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope);
else
EnterScope(Scope::BreakScope | Scope::ContinueScope);
// C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.getKind() != tok::l_brace;
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
if (Tok.getKind() != tok::kw_while) {
ExitScope();
Diag(Tok, diag::err_expected_while);
Diag(DoLoc, diag::err_matching, "do");
SkipUntil(tok::semi);
return true;
}
SourceLocation WhileLoc = ConsumeToken();
if (Tok.getKind() != tok::l_paren) {
ExitScope();
Diag(Tok, diag::err_expected_lparen_after, "do/while");
SkipUntil(tok::semi);
return true;
}
// Parse the condition.
ExprResult Cond = ParseSimpleParenExpression();
ExitScope();
if (Cond.isInvalid || Body.isInvalid) return true;
return Actions.ParseDoStmt(DoLoc, Body.Val, WhileLoc, Cond.Val);
}
/// ParseForStatement
/// for-statement: [C99 6.8.5.3]
/// 'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement
/// 'for' '(' declaration expr[opt] ';' expr[opt] ')' statement
Parser::StmtResult Parser::ParseForStatement() {
assert(Tok.getKind() == tok::kw_for && "Not a for stmt!");
SourceLocation ForLoc = ConsumeToken(); // eat the 'for'.
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "for");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.5p5 - In C99, the for statement is a block. This is not
// the case for C90. Start the loop scope.
if (getLang().C99)
EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope);
else
EnterScope(Scope::BreakScope | Scope::ContinueScope);
SourceLocation LParenLoc = ConsumeParen();
ExprResult Value;
StmtTy *FirstPart = 0;
ExprTy *SecondPart = 0;
StmtTy *ThirdPart = 0;
// Parse the first part of the for specifier.
if (Tok.getKind() == tok::semi) { // for (;
// no first part, eat the ';'.
ConsumeToken();
} else if (isDeclarationSpecifier()) { // for (int X = 4;
// Parse declaration, which eats the ';'.
if (!getLang().C99) // Use of C99-style for loops in C90 mode?
Diag(Tok, diag::ext_c99_variable_decl_in_for_loop);
DeclTy *aBlockVarDecl = ParseDeclaration(Declarator::ForContext);
StmtResult stmtResult = Actions.ParseDeclStmt(aBlockVarDecl);
FirstPart = stmtResult.isInvalid ? 0 : stmtResult.Val;
} else {
Value = ParseExpression();
// Turn the expression into a stmt.
if (!Value.isInvalid) {
StmtResult R = Actions.ParseExprStmt(Value.Val);
if (!R.isInvalid)
FirstPart = R.Val;
}
if (Tok.getKind() == tok::semi) {
ConsumeToken();
} else {
if (!Value.isInvalid) Diag(Tok, diag::err_expected_semi_for);
SkipUntil(tok::semi);
}
}
// Parse the second part of the for specifier.
if (Tok.getKind() == tok::semi) { // for (...;;
// no second part.
Value = ExprResult();
} else {
Value = ParseExpression();
if (!Value.isInvalid)
SecondPart = Value.Val;
}
if (Tok.getKind() == tok::semi) {
ConsumeToken();
} else {
if (!Value.isInvalid) Diag(Tok, diag::err_expected_semi_for);
SkipUntil(tok::semi);
}
// Parse the third part of the for specifier.
if (Tok.getKind() == tok::r_paren) { // for (...;...;)
// no third part.
Value = ExprResult();
} else {
Value = ParseExpression();
if (!Value.isInvalid) {
// Turn the expression into a stmt.
StmtResult R = Actions.ParseExprStmt(Value.Val);
if (!R.isInvalid)
ThirdPart = R.Val;
}
}
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.getKind() != tok::l_brace;
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
// Leave the for-scope.
ExitScope();
if (Body.isInvalid)
return Body;
return Actions.ParseForStmt(ForLoc, LParenLoc, FirstPart, SecondPart,
ThirdPart, RParenLoc, Body.Val);
}
/// ParseGotoStatement
/// jump-statement:
/// 'goto' identifier ';'
/// [GNU] 'goto' '*' expression ';'
///
/// Note: this lets the caller parse the end ';'.
///
Parser::StmtResult Parser::ParseGotoStatement() {
assert(Tok.getKind() == tok::kw_goto && "Not a goto stmt!");
SourceLocation GotoLoc = ConsumeToken(); // eat the 'goto'.
StmtResult Res;
if (Tok.getKind() == tok::identifier) {
Res = Actions.ParseGotoStmt(GotoLoc, Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
} else if (Tok.getKind() == tok::star && !getLang().NoExtensions) {
// GNU indirect goto extension.
Diag(Tok, diag::ext_gnu_indirect_goto);
SourceLocation StarLoc = ConsumeToken();
ExprResult R = ParseExpression();
if (R.isInvalid) { // Skip to the semicolon, but don't consume it.
SkipUntil(tok::semi, false, true);
return true;
}
Res = Actions.ParseIndirectGotoStmt(GotoLoc, StarLoc, R.Val);
} else {
Diag(Tok, diag::err_expected_ident);
return true;
}
return Res;
}
/// ParseContinueStatement
/// jump-statement:
/// 'continue' ';'
///
/// Note: this lets the caller parse the end ';'.
///
Parser::StmtResult Parser::ParseContinueStatement() {
SourceLocation ContinueLoc = ConsumeToken(); // eat the 'continue'.
return Actions.ParseContinueStmt(ContinueLoc, CurScope);
}
/// ParseBreakStatement
/// jump-statement:
/// 'break' ';'
///
/// Note: this lets the caller parse the end ';'.
///
Parser::StmtResult Parser::ParseBreakStatement() {
SourceLocation BreakLoc = ConsumeToken(); // eat the 'break'.
return Actions.ParseBreakStmt(BreakLoc, CurScope);
}
/// ParseReturnStatement
/// jump-statement:
/// 'return' expression[opt] ';'
Parser::StmtResult Parser::ParseReturnStatement() {
assert(Tok.getKind() == tok::kw_return && "Not a return stmt!");
SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'.
ExprResult R(0);
if (Tok.getKind() != tok::semi) {
R = ParseExpression();
if (R.isInvalid) { // Skip to the semicolon, but don't consume it.
SkipUntil(tok::semi, false, true);
return true;
}
}
return Actions.ParseReturnStmt(ReturnLoc, R.Val);
}
/// ParseAsmStatement - Parse a GNU extended asm statement.
/// [GNU] asm-statement:
/// 'asm' type-qualifier[opt] '(' asm-argument ')' ';'
///
/// [GNU] asm-argument:
/// asm-string-literal
/// asm-string-literal ':' asm-operands[opt]
/// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
/// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
/// ':' asm-clobbers
///
/// [GNU] asm-clobbers:
/// asm-string-literal
/// asm-clobbers ',' asm-string-literal
///
Parser::StmtResult Parser::ParseAsmStatement() {
assert(Tok.getKind() == tok::kw_asm && "Not an asm stmt");
ConsumeToken();
DeclSpec DS;
SourceLocation Loc = Tok.getLocation();
ParseTypeQualifierListOpt(DS);
// GNU asms accept, but warn, about type-qualifiers other than volatile.
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(Loc, diag::w_asm_qualifier_ignored, "const");
if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
Diag(Loc, diag::w_asm_qualifier_ignored, "restrict");
// Remember if this was a volatile asm.
//bool isVolatile = DS.TypeQualifiers & DeclSpec::TQ_volatile;
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "asm");
SkipUntil(tok::r_paren);
return true;
}
Loc = ConsumeParen();
ParseAsmStringLiteral();
// Parse Outputs, if present.
ParseAsmOperandsOpt();
// Parse Inputs, if present.
ParseAsmOperandsOpt();
// Parse the clobbers, if present.
if (Tok.getKind() == tok::colon) {
ConsumeToken();
if (isTokenStringLiteral()) {
// Parse the asm-string list for clobbers.
while (1) {
ParseAsmStringLiteral();
if (Tok.getKind() != tok::comma) break;
ConsumeToken();
}
}
}
MatchRHSPunctuation(tok::r_paren, Loc);
// FIXME: Implement action for asm parsing.
return false;
}
/// ParseAsmOperands - Parse the asm-operands production as used by
/// asm-statement. We also parse a leading ':' token. If the leading colon is
/// not present, we do not parse anything.
///
/// [GNU] asm-operands:
/// asm-operand
/// asm-operands ',' asm-operand
///
/// [GNU] asm-operand:
/// asm-string-literal '(' expression ')'
/// '[' identifier ']' asm-string-literal '(' expression ')'
///
void Parser::ParseAsmOperandsOpt() {
// Only do anything if this operand is present.
if (Tok.getKind() != tok::colon) return;
ConsumeToken();
// 'asm-operands' isn't present?
if (!isTokenStringLiteral() && Tok.getKind() != tok::l_square)
return;
while (1) {
// Read the [id] if present.
if (Tok.getKind() == tok::l_square) {
SourceLocation Loc = ConsumeBracket();
if (Tok.getKind() != tok::identifier) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren);
return;
}
MatchRHSPunctuation(tok::r_square, Loc);
}
ParseAsmStringLiteral();
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "asm operand");
SkipUntil(tok::r_paren);
return;
}
// Read the parenthesized expression.
ExprResult Res = ParseSimpleParenExpression();
if (Res.isInvalid) {
SkipUntil(tok::r_paren);
return;
}
// Eat the comma and continue parsing if it exists.
if (Tok.getKind() != tok::comma) return;
ConsumeToken();
}
}

View File

@@ -1,647 +0,0 @@
//===--- Parser.cpp - C Language Family Parser ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;
Parser::Parser(Preprocessor &pp, Action &actions)
: PP(pp), Actions(actions), Diags(PP.getDiagnostics()) {
Tok.setKind(tok::eof);
CurScope = 0;
NumCachedScopes = 0;
ParenCount = BracketCount = BraceCount = 0;
ObjcImpDecl = 0;
}
/// Out-of-line virtual destructor to provide home for Action class.
Action::~Action() {}
void Parser::Diag(SourceLocation Loc, unsigned DiagID,
const std::string &Msg) {
Diags.Report(Loc, DiagID, &Msg, 1);
}
/// MatchRHSPunctuation - For punctuation with a LHS and RHS (e.g. '['/']'),
/// this helper function matches and consumes the specified RHS token if
/// present. If not present, it emits the specified diagnostic indicating
/// that the parser failed to match the RHS of the token at LHSLoc. LHSName
/// should be the name of the unmatched LHS token.
SourceLocation Parser::MatchRHSPunctuation(tok::TokenKind RHSTok,
SourceLocation LHSLoc) {
if (Tok.getKind() == RHSTok)
return ConsumeAnyToken();
SourceLocation R = Tok.getLocation();
const char *LHSName = "unknown";
diag::kind DID = diag::err_parse_error;
switch (RHSTok) {
default: break;
case tok::r_paren : LHSName = "("; DID = diag::err_expected_rparen; break;
case tok::r_brace : LHSName = "{"; DID = diag::err_expected_rbrace; break;
case tok::r_square: LHSName = "["; DID = diag::err_expected_rsquare; break;
case tok::greater: LHSName = "<"; DID = diag::err_expected_greater; break;
}
Diag(Tok, DID);
Diag(LHSLoc, diag::err_matching, LHSName);
SkipUntil(RHSTok);
return R;
}
/// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the
/// input. If so, it is consumed and false is returned.
///
/// If the input is malformed, this emits the specified diagnostic. Next, if
/// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is
/// returned.
bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID,
const char *Msg, tok::TokenKind SkipToTok) {
if (Tok.getKind() == ExpectedTok) {
ConsumeAnyToken();
return false;
}
Diag(Tok, DiagID, Msg);
if (SkipToTok != tok::unknown)
SkipUntil(SkipToTok);
return true;
}
//===----------------------------------------------------------------------===//
// Error recovery.
//===----------------------------------------------------------------------===//
/// SkipUntil - Read tokens until we get to the specified token, then consume
/// it (unless DontConsume is true). Because we cannot guarantee that the
/// token will ever occur, this skips to the next token, or to some likely
/// good stopping point. If StopAtSemi is true, skipping will stop at a ';'
/// character.
///
/// If SkipUntil finds the specified token, it returns true, otherwise it
/// returns false.
bool Parser::SkipUntil(const tok::TokenKind *Toks, unsigned NumToks,
bool StopAtSemi, bool DontConsume) {
// We always want this function to skip at least one token if the first token
// isn't T and if not at EOF.
bool isFirstTokenSkipped = true;
while (1) {
// If we found one of the tokens, stop and return true.
for (unsigned i = 0; i != NumToks; ++i) {
if (Tok.getKind() == Toks[i]) {
if (DontConsume) {
// Noop, don't consume the token.
} else {
ConsumeAnyToken();
}
return true;
}
}
switch (Tok.getKind()) {
case tok::eof:
// Ran out of tokens.
return false;
case tok::l_paren:
// Recursively skip properly-nested parens.
ConsumeParen();
SkipUntil(tok::r_paren, false);
break;
case tok::l_square:
// Recursively skip properly-nested square brackets.
ConsumeBracket();
SkipUntil(tok::r_square, false);
break;
case tok::l_brace:
// Recursively skip properly-nested braces.
ConsumeBrace();
SkipUntil(tok::r_brace, false);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we skip.
case tok::r_paren:
if (ParenCount && !isFirstTokenSkipped)
return false; // Matches something.
ConsumeParen();
break;
case tok::r_square:
if (BracketCount && !isFirstTokenSkipped)
return false; // Matches something.
ConsumeBracket();
break;
case tok::r_brace:
if (BraceCount && !isFirstTokenSkipped)
return false; // Matches something.
ConsumeBrace();
break;
case tok::string_literal:
case tok::wide_string_literal:
ConsumeStringToken();
break;
case tok::semi:
if (StopAtSemi)
return false;
// FALL THROUGH.
default:
// Skip this token.
ConsumeToken();
break;
}
isFirstTokenSkipped = false;
}
}
//===----------------------------------------------------------------------===//
// Scope manipulation
//===----------------------------------------------------------------------===//
/// EnterScope - Start a new scope.
void Parser::EnterScope(unsigned ScopeFlags) {
if (NumCachedScopes) {
Scope *N = ScopeCache[--NumCachedScopes];
N->Init(CurScope, ScopeFlags);
CurScope = N;
} else {
CurScope = new Scope(CurScope, ScopeFlags);
}
}
/// ExitScope - Pop a scope off the scope stack.
void Parser::ExitScope() {
assert(CurScope && "Scope imbalance!");
// Inform the actions module that this scope is going away.
Actions.PopScope(Tok.getLocation(), CurScope);
Scope *OldScope = CurScope;
CurScope = OldScope->getParent();
if (NumCachedScopes == ScopeCacheSize)
delete OldScope;
else
ScopeCache[NumCachedScopes++] = OldScope;
}
//===----------------------------------------------------------------------===//
// C99 6.9: External Definitions.
//===----------------------------------------------------------------------===//
Parser::~Parser() {
// If we still have scopes active, delete the scope tree.
delete CurScope;
// Free the scope cache.
for (unsigned i = 0, e = NumCachedScopes; i != e; ++i)
delete ScopeCache[i];
}
/// Initialize - Warm up the parser.
///
void Parser::Initialize() {
// Prime the lexer look-ahead.
ConsumeToken();
// Create the translation unit scope. Install it as the current scope.
assert(CurScope == 0 && "A scope is already active?");
EnterScope(Scope::DeclScope);
// Install builtin types.
// TODO: Move this someplace more useful.
{
const char *Dummy;
//__builtin_va_list
DeclSpec DS;
bool Error = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, SourceLocation(),
Dummy);
// TODO: add a 'TST_builtin' type?
Error |= DS.SetTypeSpecType(DeclSpec::TST_int, SourceLocation(), Dummy);
assert(!Error && "Error setting up __builtin_va_list!");
Declarator D(DS, Declarator::FileContext);
D.SetIdentifier(PP.getIdentifierInfo("__builtin_va_list"),SourceLocation());
Actions.ParseDeclarator(CurScope, D, 0);
}
if (Tok.getKind() == tok::eof &&
!getLang().CPlusPlus) // Empty source file is an extension in C
Diag(Tok, diag::ext_empty_source_file);
// Initialization for Objective-C context sensitive keywords recognition.
// Referenced in Parser::isObjCTypeQualifier.
if (getLang().ObjC1) {
ObjcTypeQuals[objc_in] = &PP.getIdentifierTable().get("in");
ObjcTypeQuals[objc_out] = &PP.getIdentifierTable().get("out");
ObjcTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout");
ObjcTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway");
ObjcTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy");
ObjcTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref");
}
if (getLang().ObjC2) {
ObjcPropertyAttrs[objc_readonly] = &PP.getIdentifierTable().get("readonly");
ObjcPropertyAttrs[objc_getter] = &PP.getIdentifierTable().get("getter");
ObjcPropertyAttrs[objc_setter] = &PP.getIdentifierTable().get("setter");
ObjcPropertyAttrs[objc_assign] = &PP.getIdentifierTable().get("assign");
ObjcPropertyAttrs[objc_readwrite] =
&PP.getIdentifierTable().get("readwrite");
ObjcPropertyAttrs[objc_retain] = &PP.getIdentifierTable().get("retain");
ObjcPropertyAttrs[objc_copy] = &PP.getIdentifierTable().get("copy");
ObjcPropertyAttrs[objc_nonatomic] =
&PP.getIdentifierTable().get("nonatomic");
}
}
/// ParseTopLevelDecl - Parse one top-level declaration, return whatever the
/// action tells us to. This returns true if the EOF was encountered.
bool Parser::ParseTopLevelDecl(DeclTy*& Result) {
Result = 0;
if (Tok.getKind() == tok::eof) return true;
Result = ParseExternalDeclaration();
return false;
}
/// Finalize - Shut down the parser.
///
void Parser::Finalize() {
ExitScope();
assert(CurScope == 0 && "Scope imbalance!");
}
/// ParseTranslationUnit:
/// translation-unit: [C99 6.9]
/// external-declaration
/// translation-unit external-declaration
void Parser::ParseTranslationUnit() {
Initialize();
DeclTy *Res;
while (!ParseTopLevelDecl(Res))
/*parse them all*/;
Finalize();
}
/// ParseExternalDeclaration:
/// external-declaration: [C99 6.9]
/// function-definition
/// declaration
/// [EXT] ';'
/// [GNU] asm-definition
/// [GNU] __extension__ external-declaration
/// [OBJC] objc-class-definition
/// [OBJC] objc-class-declaration
/// [OBJC] objc-alias-declaration
/// [OBJC] objc-protocol-definition
/// [OBJC] objc-method-definition
/// [OBJC] @end
///
/// [GNU] asm-definition:
/// simple-asm-expr ';'
///
Parser::DeclTy *Parser::ParseExternalDeclaration() {
switch (Tok.getKind()) {
case tok::semi:
Diag(Tok, diag::ext_top_level_semi);
ConsumeToken();
// TODO: Invoke action for top-level semicolon.
return 0;
case tok::kw___extension__: {
ConsumeToken();
// FIXME: Disable extension warnings.
DeclTy *RV = ParseExternalDeclaration();
// FIXME: Restore extension warnings.
return RV;
}
case tok::kw_asm:
ParseSimpleAsm();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
"top-level asm block");
// TODO: Invoke action for top-level asm.
return 0;
case tok::at:
// @ is not a legal token unless objc is enabled, no need to check.
return ParseObjCAtDirectives();
case tok::minus:
if (getLang().ObjC1) {
ParseObjCInstanceMethodDefinition();
} else {
Diag(Tok, diag::err_expected_external_declaration);
ConsumeToken();
}
return 0;
case tok::plus:
if (getLang().ObjC1) {
ParseObjCClassMethodDefinition();
} else {
Diag(Tok, diag::err_expected_external_declaration);
ConsumeToken();
}
return 0;
case tok::kw_namespace:
case tok::kw_typedef:
// A function definition cannot start with a these keywords.
return ParseDeclaration(Declarator::FileContext);
default:
// We can't tell whether this is a function-definition or declaration yet.
return ParseDeclarationOrFunctionDefinition();
}
}
/// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or
/// a declaration. We can't tell which we have until we read up to the
/// compound-statement in function-definition.
///
/// function-definition: [C99 6.9.1]
/// declaration-specifiers[opt] declarator declaration-list[opt]
/// compound-statement
/// declaration: [C99 6.7]
/// declaration-specifiers init-declarator-list[opt] ';'
/// [!C99] init-declarator-list ';' [TODO: warn in c99 mode]
/// [OMP] threadprivate-directive [TODO]
///
Parser::DeclTy *Parser::ParseDeclarationOrFunctionDefinition() {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.getKind() == tok::semi) {
ConsumeToken();
return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
}
// ObjC2 allows prefix attributes on class interfaces.
if (getLang().ObjC2 && Tok.getKind() == tok::at) {
SourceLocation AtLoc = ConsumeToken(); // the "@"
if (Tok.getIdentifierInfo()->getObjCKeywordID() == tok::objc_interface)
return ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes());
}
// Parse the first declarator.
Declarator DeclaratorInfo(DS, Declarator::FileContext);
ParseDeclarator(DeclaratorInfo);
// Error parsing the declarator?
if (DeclaratorInfo.getIdentifier() == 0) {
// If so, skip until the semi-colon or a }.
SkipUntil(tok::r_brace, true);
if (Tok.getKind() == tok::semi)
ConsumeToken();
return 0;
}
// If the declarator is the start of a function definition, handle it.
if (Tok.getKind() == tok::equal || // int X()= -> not a function def
Tok.getKind() == tok::comma || // int X(), -> not a function def
Tok.getKind() == tok::semi || // int X(); -> not a function def
Tok.getKind() == tok::kw_asm || // int X() __asm__ -> not a fn def
Tok.getKind() == tok::kw___attribute) {// int X() __attr__ -> not a fn def
// FALL THROUGH.
} else if (DeclaratorInfo.isFunctionDeclarator() &&
(Tok.getKind() == tok::l_brace || // int X() {}
isDeclarationSpecifier())) { // int X(f) int f; {}
return ParseFunctionDefinition(DeclaratorInfo);
} else {
if (DeclaratorInfo.isFunctionDeclarator())
Diag(Tok, diag::err_expected_fn_body);
else
Diag(Tok, diag::err_expected_after_declarator);
SkipUntil(tok::semi);
return 0;
}
// Parse the init-declarator-list for a normal declaration.
return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
}
/// ParseFunctionDefinition - We parsed and verified that the specified
/// Declarator is well formed. If this is a K&R-style function, read the
/// parameters declaration-list, then start the compound-statement.
///
/// declaration-specifiers[opt] declarator declaration-list[opt]
/// compound-statement [TODO]
///
Parser::DeclTy *Parser::ParseFunctionDefinition(Declarator &D) {
const DeclaratorChunk &FnTypeInfo = D.getTypeObject(0);
assert(FnTypeInfo.Kind == DeclaratorChunk::Function &&
"This isn't a function declarator!");
const DeclaratorChunk::FunctionTypeInfo &FTI = FnTypeInfo.Fun;
// If this declaration was formed with a K&R-style identifier list for the
// arguments, parse declarations for all of the args next.
// int foo(a,b) int a; float b; {}
if (!FTI.hasPrototype && FTI.NumArgs != 0)
ParseKNRParamDeclarations(D);
// Enter a scope for the function body.
EnterScope(Scope::FnScope|Scope::DeclScope);
// Tell the actions module that we have entered a function definition with the
// specified Declarator for the function.
DeclTy *Res = Actions.ParseStartOfFunctionDef(CurScope, D);
// We should have an opening brace now.
if (Tok.getKind() != tok::l_brace) {
Diag(Tok, diag::err_expected_fn_body);
// Skip over garbage, until we get to '{'. Don't eat the '{'.
SkipUntil(tok::l_brace, true, true);
// If we didn't find the '{', bail out.
if (Tok.getKind() != tok::l_brace) {
ExitScope();
return 0;
}
}
// Do not enter a scope for the brace, as the arguments are in the same scope
// (the function body) as the body itself. Instead, just read the statement
// list and put it into a CompoundStmt for safe keeping.
StmtResult FnBody = ParseCompoundStatementBody();
if (FnBody.isInvalid) {
ExitScope();
return 0;
}
// Leave the function body scope.
ExitScope();
// TODO: Pass argument information.
return Actions.ParseFunctionDefBody(Res, FnBody.Val);
}
/// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides
/// types for a function with a K&R-style identifier list for arguments.
void Parser::ParseKNRParamDeclarations(Declarator &D) {
// We know that the top-level of this declarator is a function.
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
// Read all the argument declarations.
while (isDeclarationSpecifier()) {
SourceLocation DSStart = Tok.getLocation();
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
// C99 6.9.1p6: 'each declaration in the declaration list shall have at
// least one declarator'.
// NOTE: GCC just makes this an ext-warn. It's not clear what it does with
// the declarations though. It's trivial to ignore them, really hard to do
// anything else with them.
if (Tok.getKind() == tok::semi) {
Diag(DSStart, diag::err_declaration_does_not_declare_param);
ConsumeToken();
continue;
}
// C99 6.9.1p6: Declarations shall contain no storage-class specifiers other
// than register.
if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
DS.getStorageClassSpec() != DeclSpec::SCS_register) {
Diag(DS.getStorageClassSpecLoc(),
diag::err_invalid_storage_class_in_func_decl);
DS.ClearStorageClassSpecs();
}
if (DS.isThreadSpecified()) {
Diag(DS.getThreadSpecLoc(),
diag::err_invalid_storage_class_in_func_decl);
DS.ClearStorageClassSpecs();
}
// Parse the first declarator attached to this declspec.
Declarator ParmDeclarator(DS, Declarator::KNRTypeListContext);
ParseDeclarator(ParmDeclarator);
// Handle the full declarator list.
while (1) {
DeclTy *AttrList;
// If attributes are present, parse them.
if (Tok.getKind() == tok::kw___attribute)
// FIXME: attach attributes too.
AttrList = ParseAttributes();
// Ask the actions module to compute the type for this declarator.
Action::TypeResult TR =
Actions.ParseParamDeclaratorType(CurScope, ParmDeclarator);
if (!TR.isInvalid &&
// A missing identifier has already been diagnosed.
ParmDeclarator.getIdentifier()) {
// Scan the argument list looking for the correct param to apply this
// type.
for (unsigned i = 0; ; ++i) {
// C99 6.9.1p6: those declarators shall declare only identifiers from
// the identifier list.
if (i == FTI.NumArgs) {
Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param,
ParmDeclarator.getIdentifier()->getName());
break;
}
if (FTI.ArgInfo[i].Ident == ParmDeclarator.getIdentifier()) {
// Reject redefinitions of parameters.
if (FTI.ArgInfo[i].TypeInfo) {
Diag(ParmDeclarator.getIdentifierLoc(),
diag::err_param_redefinition,
ParmDeclarator.getIdentifier()->getName());
} else {
FTI.ArgInfo[i].TypeInfo = TR.Val;
}
break;
}
}
}
// If we don't have a comma, it is either the end of the list (a ';') or
// an error, bail out.
if (Tok.getKind() != tok::comma)
break;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
ParmDeclarator.clear();
ParseDeclarator(ParmDeclarator);
}
if (Tok.getKind() == tok::semi) {
ConsumeToken();
} else {
Diag(Tok, diag::err_parse_error);
// Skip to end of block or statement
SkipUntil(tok::semi, true);
if (Tok.getKind() == tok::semi)
ConsumeToken();
}
}
// The actions module must verify that all arguments were declared.
}
/// ParseAsmStringLiteral - This is just a normal string-literal, but is not
/// allowed to be a wide string, and is not subject to character translation.
///
/// [GNU] asm-string-literal:
/// string-literal
///
void Parser::ParseAsmStringLiteral() {
if (!isTokenStringLiteral()) {
Diag(Tok, diag::err_expected_string_literal);
return;
}
ExprResult Res = ParseStringLiteralExpression();
if (Res.isInvalid) return;
// TODO: Diagnose: wide string literal in 'asm'
}
/// ParseSimpleAsm
///
/// [GNU] simple-asm-expr:
/// 'asm' '(' asm-string-literal ')'
///
void Parser::ParseSimpleAsm() {
assert(Tok.getKind() == tok::kw_asm && "Not an asm!");
ConsumeToken();
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "asm");
return;
}
SourceLocation Loc = ConsumeParen();
ParseAsmStringLiteral();
MatchRHSPunctuation(tok::r_paren, Loc);
}

View File

@@ -1,180 +0,0 @@
//===----------------------------------------------------------------------===//
// C Language Family Front-end
//===----------------------------------------------------------------------===//
Chris Lattner
I. Introduction:
clang: noun
1. A loud, resonant, metallic sound.
2. The strident call of a crane or goose.
3. C-language family front-end toolkit.
The world needs better compiler tools, tools which are built as libraries. This
design point allows reuse of the tools in new and novel ways. However, building
the tools as libraries isn't enough: they must have clean APIs, be as
decoupled from each other as possible, and be easy to modify/extend. This
requires clean layering, decent design, and avoiding tying the libraries to a
specific use. Oh yeah, did I mention that we want the resultant libraries to
be as fast as possible? :)
This front-end is built as a component of the LLVM toolkit that can be used
with the LLVM backend or independently of it. In this spirit, the API has been
carefully designed as the following components:
libsupport - Basic support library, reused from LLVM.
libsystem - System abstraction library, reused from LLVM.
libbasic - Diagnostics, SourceLocations, SourceBuffer abstraction,
file system caching for input source files. This depends on
libsupport and libsystem.
libast - Provides classes to represent the C AST, the C type system,
builtin functions, and various helpers for analyzing and
manipulating the AST (visitors, pretty printers, etc). This
library depends on libbasic.
liblex - C/C++/ObjC lexing and preprocessing, identifier hash table,
pragma handling, tokens, and macros. This depends on libbasic.
libparse - C (for now) parsing and local semantic analysis. This library
invokes coarse-grained 'Actions' provided by the client to do
stuff (e.g. libsema builds ASTs). This depends on liblex.
libsema - Provides a set of parser actions to build a standardized AST
for programs. AST's are 'streamed' out a top-level declaration
at a time, allowing clients to use decl-at-a-time processing,
build up entire translation units, or even build 'whole
program' ASTs depending on how they use the APIs. This depends
on libast and libparse.
libcodegen - Lower the AST to LLVM IR for optimization & codegen. Depends
on libast.
clang - An example driver, client of the libraries at various levels.
This depends on all these libraries, and on LLVM VMCore.
This front-end has been intentionally built as a DAG of libraries, making it
easy to reuse individual parts or replace pieces if desired. For example, to
build a preprocessor, you take the Basic and Lexer libraries. If you want an
indexer, you take those plus the Parser library and provide some actions for
indexing. If you want a refactoring, static analysis, or source-to-source
compiler tool, it makes sense to take those plus the AST building and semantic
analyzer library. Finally, if you want to use this with the LLVM backend,
you'd take these components plus the AST to LLVM lowering code.
In the future I hope this toolkit will grow to include new and interesting
components, including a C++ front-end, ObjC support, and a whole lot of other
things.
Finally, it should be pointed out that the goal here is to build something that
is high-quality and industrial-strength: all the obnoxious features of the C
family must be correctly supported (trigraphs, preprocessor arcana, K&R-style
prototypes, GCC/MS extensions, etc). It cannot be used if it is not 'real'.
II. Usage of clang driver:
* Basic Command-Line Options:
- Help: clang --help
- Standard GCC options accepted: -E, -I*, -i*, -pedantic, -std=c90, etc.
- To make diagnostics more gcc-like: -fno-caret-diagnostics -fno-show-column
- Enable metric printing: -stats
* -fsyntax-only is currently the default mode.
* -E mode works the same way as GCC.
* -Eonly mode does all preprocessing, but does not print the output,
useful for timing the preprocessor.
* -fsyntax-only is currently partially implemented, lacking some
semantic analysis (some errors and warnings are not produced).
* -parse-noop parses code without building an AST. This is useful
for timing the cost of the parser without including AST building
time.
* -parse-ast builds ASTs, but doesn't print them. This is most
useful for timing AST building vs -parse-noop.
* -parse-ast-print pretty prints most expression and statements nodes.
* -parse-ast-check checks that diagnostic messages that are expected
are reported and that those which are reported are expected.
* -dump-cfg builds ASTs and then CFGs. CFGs are then pretty-printed.
* -view-cfg builds ASTs and then CFGs. CFGs are then visualized by
invoking Graphviz.
For more information on getting Graphviz to work with clang/LLVM,
see: http://llvm.org/docs/ProgrammersManual.html#ViewGraph
III. Current advantages over GCC:
* Column numbers are fully tracked (no 256 col limit, no GCC-style pruning).
* All diagnostics have column numbers, includes 'caret diagnostics', and they
highlight regions of interesting code (e.g. the LHS and RHS of a binop).
* Full diagnostic customization by client (can format diagnostics however they
like, e.g. in an IDE or refactoring tool) through DiagnosticClient interface.
* Built as a framework, can be reused by multiple tools.
* All languages supported linked into same library (no cc1,cc1obj, ...).
* mmap's code in read-only, does not dirty the pages like GCC (mem footprint).
* LLVM License, can be linked into non-GPL projects.
* Full diagnostic control, per diagnostic. Diagnostics are identified by ID.
* Significantly faster than GCC at semantic analysis, parsing, preprocessing
and lexing.
* Defers exposing platform-specific stuff to as late as possible, tracks use of
platform-specific features (e.g. #ifdef PPC) to allow 'portable bytecodes'.
* The lexer doesn't rely on the "lexer hack": it has no notion of scope and
does not categorize identifiers as types or variables -- this is up to the
parser to decide.
Potential Future Features:
* Fine grained diag control within the source (#pragma enable/disable warning).
* Better token tracking within macros? (Token came from this line, which is
a macro argument instantiated here, recursively instantiated here).
* Fast #import with a module system.
* Dependency tracking: change to header file doesn't recompile every function
that texually depends on it: recompile only those functions that need it.
This is aka 'incremental parsing'.
IV. Missing Functionality / Improvements
clang driver:
* Include search paths are hard-coded into the driver. Doh.
File Manager:
* Reduce syscalls for reduced compile time, see NOTES.txt.
Lexer:
* Source character mapping. GCC supports ASCII and UTF-8.
See GCC options: -ftarget-charset and -ftarget-wide-charset.
* Universal character support. Experimental in GCC, enabled with
-fextended-identifiers.
* -fpreprocessed mode.
Preprocessor:
* Know about apple header maps.
* #assert/#unassert
* #line / #file directives (currently accepted and ignored).
* MSExtension: "L#param" stringizes to a wide string literal.
* Charize extension: "#define F(o) #@o F(a)" -> 'a'.
* Consider merging the parser's expression parser into the preprocessor to
eliminate duplicate code.
* Add support for -M*
Traditional Preprocessor:
* Currently, we have none. :)
Parser:
* C90/K&R modes are only partially implemented.
* __extension__ is currently just skipped and ignored.
* "initializers", GCC inline asm.
Semantic Analysis:
* Perhaps 75% done.
LLVM Code Gen:
* Still very early.

View File

@@ -1,111 +0,0 @@
//===--- ASTStreamer.cpp - Provide streaming interface to ASTs ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTStreamer interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/ASTStreamer.h"
#include "clang/AST/ASTContext.h"
#include "Sema.h"
#include "clang/Parse/Action.h"
#include "clang/Parse/Parser.h"
using namespace clang;
namespace {
class ASTStreamer {
Parser P;
std::vector<Decl*> LastInGroupList;
public:
ASTStreamer(Preprocessor &pp, ASTContext &ctxt, unsigned MainFileID)
: P(pp, *new Sema(pp, ctxt, LastInGroupList)) {
pp.EnterSourceFile(MainFileID, 0, true);
// Initialize the parser.
P.Initialize();
}
/// ReadTopLevelDecl - Parse and return the next top-level declaration.
Decl *ReadTopLevelDecl();
void PrintStats() const;
~ASTStreamer() {
P.Finalize();
delete &P.getActions();
}
};
}
/// ReadTopLevelDecl - Parse and return the next top-level declaration.
///
Decl *ASTStreamer::ReadTopLevelDecl() {
Parser::DeclTy *Result;
/// If the previous time through we read something like 'int X, Y', return
/// the next declarator.
if (!LastInGroupList.empty()) {
Result = LastInGroupList.back();
LastInGroupList.pop_back();
return static_cast<Decl*>(Result);
}
do {
if (P.ParseTopLevelDecl(Result))
return 0; // End of file.
// If we got a null return and something *was* parsed, try again. This
// is due to a top-level semicolon, an action override, or a parse error
// skipping something.
} while (Result == 0);
// If we parsed a declspec with multiple declarators, reverse the list and
// return the first one.
if (!LastInGroupList.empty()) {
LastInGroupList.push_back((Decl*)Result);
std::reverse(LastInGroupList.begin(), LastInGroupList.end());
Result = LastInGroupList.back();
LastInGroupList.pop_back();
}
return static_cast<Decl*>(Result);
}
void ASTStreamer::PrintStats() const {
}
//===----------------------------------------------------------------------===//
// Public interface to the file
//===----------------------------------------------------------------------===//
/// ASTStreamer_Init - Create an ASTStreamer with the specified preprocessor
/// and FileID.
ASTStreamerTy *clang::ASTStreamer_Init(Preprocessor &pp, ASTContext &ctxt,
unsigned MainFileID) {
return new ASTStreamer(pp, ctxt, MainFileID);
}
/// ASTStreamer_ReadTopLevelDecl - Parse and return one top-level declaration.
/// This returns null at end of file.
Decl *clang::ASTStreamer_ReadTopLevelDecl(ASTStreamerTy *Streamer) {
return static_cast<ASTStreamer*>(Streamer)->ReadTopLevelDecl();
}
/// ASTStreamer_PrintStats - Emit statistic information to stderr.
///
void clang::ASTStreamer_PrintStats(ASTStreamerTy *Streamer) {
return static_cast<ASTStreamer*>(Streamer)->PrintStats();
}
/// ASTStreamer_Terminate - Gracefully shut down the streamer.
///
void clang::ASTStreamer_Terminate(ASTStreamerTy *Streamer) {
delete static_cast<ASTStreamer*>(Streamer);
}

View File

@@ -1,23 +0,0 @@
##===- clang/Sema/Makefile ---------------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Chris Lattner and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This implements the semantic analyzer and AST builder library for the
# C-Language front-end.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME := clangSEMA
BUILD_ARCHIVE = 1
CXXFLAGS = -fno-rtti
CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
include $(LEVEL)/Makefile.common

View File

@@ -1,111 +0,0 @@
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the actions class which performs semantic analysis and
// builds an AST out of a parse stream.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
using namespace clang;
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, std::vector<Decl*> &prevInGroup)
: PP(pp), Context(ctxt), CurFunctionDecl(0), LastInGroupList(prevInGroup) {
// Get IdentifierInfo objects for known functions for which we
// do extra checking.
IdentifierTable& IT = PP.getIdentifierTable();
KnownFunctionIDs[ id_printf ] = &IT.get("printf");
KnownFunctionIDs[ id_fprintf ] = &IT.get("fprintf");
KnownFunctionIDs[ id_sprintf ] = &IT.get("sprintf");
KnownFunctionIDs[ id_snprintf ] = &IT.get("snprintf");
KnownFunctionIDs[ id_asprintf ] = &IT.get("asprintf");
KnownFunctionIDs[ id_vsnprintf ] = &IT.get("vsnprintf");
KnownFunctionIDs[ id_vasprintf ] = &IT.get("vasprintf");
KnownFunctionIDs[ id_vfprintf ] = &IT.get("vfprintf");
KnownFunctionIDs[ id_vsprintf ] = &IT.get("vsprintf");
KnownFunctionIDs[ id_vprintf ] = &IT.get("vprintf");
}
void Sema::DeleteExpr(ExprTy *E) {
delete static_cast<Expr*>(E);
}
void Sema::DeleteStmt(StmtTy *S) {
delete static_cast<Stmt*>(S);
}
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
bool Sema::Diag(SourceLocation Loc, unsigned DiagID) {
PP.getDiagnostics().Report(Loc, DiagID);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg) {
PP.getDiagnostics().Report(Loc, DiagID, &Msg, 1);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2) {
std::string MsgArr[] = { Msg1, Msg2 };
PP.getDiagnostics().Report(Loc, DiagID, MsgArr, 2);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID, SourceRange Range) {
PP.getDiagnostics().Report(Loc, DiagID, 0, 0, &Range, 1);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg,
SourceRange Range) {
PP.getDiagnostics().Report(Loc, DiagID, &Msg, 1, &Range, 1);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2, SourceRange Range) {
std::string MsgArr[] = { Msg1, Msg2 };
PP.getDiagnostics().Report(Loc, DiagID, MsgArr, 2, &Range, 1);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID,
SourceRange R1, SourceRange R2) {
SourceRange RangeArr[] = { R1, R2 };
PP.getDiagnostics().Report(Loc, DiagID, 0, 0, RangeArr, 2);
return true;
}
bool Sema::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg,
SourceRange R1, SourceRange R2) {
SourceRange RangeArr[] = { R1, R2 };
PP.getDiagnostics().Report(Loc, DiagID, &Msg, 1, RangeArr, 2);
return true;
}
bool Sema::Diag(SourceLocation Range, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2, SourceRange R1, SourceRange R2) {
std::string MsgArr[] = { Msg1, Msg2 };
SourceRange RangeArr[] = { R1, R2 };
PP.getDiagnostics().Report(Range, DiagID, MsgArr, 2, RangeArr, 2);
return true;
}
const LangOptions &Sema::getLangOptions() const {
return PP.getLangOptions();
}

View File

@@ -1,512 +0,0 @@
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_SEMA_H
#define LLVM_CLANG_AST_SEMA_H
#include "clang/Parse/Action.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>
#include <string>
namespace llvm {
class APSInt;
}
namespace clang {
class ASTContext;
class Preprocessor;
class Decl;
class Expr;
class InitListExpr;
class VarDecl;
class ParmVarDecl;
class TypedefDecl;
class FunctionDecl;
class QualType;
struct LangOptions;
struct DeclaratorChunk;
class Token;
class IntegerLiteral;
class ArrayType;
class LabelStmt;
class SwitchStmt;
class OCUVectorType;
class TypedefDecl;
/// Sema - This implements semantic analysis and AST building for C.
class Sema : public Action {
Preprocessor &PP;
ASTContext &Context;
/// CurFunctionDecl - If inside of a function body, this contains a pointer to
/// the function decl for the function being parsed.
FunctionDecl *CurFunctionDecl;
/// LastInGroupList - This vector is populated when there are multiple
/// declarators in a single decl group (e.g. "int A, B, C"). In this case,
/// all but the last decl will be entered into this. This is used by the
/// ASTStreamer.
std::vector<Decl*> &LastInGroupList;
/// LabelMap - This is a mapping from label identifiers to the LabelStmt for
/// it (which acts like the label decl in some ways). Forward referenced
/// labels have a LabelStmt created for them with a null location & SubStmt.
llvm::DenseMap<IdentifierInfo*, LabelStmt*> LabelMap;
llvm::SmallVector<SwitchStmt*, 8> SwitchStack;
/// OCUVectorDecls - This is a list all the OCU vector types. This allows
/// us to associate a raw vector type with one of the OCU type names.
/// This is only necessary for issuing pretty diagnostics.
llvm::SmallVector<TypedefDecl*, 24> OCUVectorDecls;
// Enum values used by KnownFunctionIDs (see below).
enum {
id_printf,
id_fprintf,
id_sprintf,
id_snprintf,
id_asprintf,
id_vsnprintf,
id_vasprintf,
id_vfprintf,
id_vsprintf,
id_vprintf,
id_num_known_functions
};
/// KnownFunctionIDs - This is a list of IdentifierInfo objects to a set
/// of known functions used by the semantic analysis to do various
/// kinds of checking (e.g. checking format string errors in printf calls).
/// This list is populated upon the creation of a Sema object.
IdentifierInfo* KnownFunctionIDs[ id_num_known_functions ];
public:
Sema(Preprocessor &pp, ASTContext &ctxt, std::vector<Decl*> &prevInGroup);
const LangOptions &getLangOptions() const;
/// The primitive diagnostic helpers - always returns true, which simplifies
/// error handling (i.e. less code).
bool Diag(SourceLocation Loc, unsigned DiagID);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2);
/// More expressive diagnostic helpers for expressions (say that 6 times:-)
bool Diag(SourceLocation Loc, unsigned DiagID, SourceRange R1);
bool Diag(SourceLocation Loc, unsigned DiagID,
SourceRange R1, SourceRange R2);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg,
SourceRange R1);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg,
SourceRange R1, SourceRange R2);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2, SourceRange R1);
bool Diag(SourceLocation Loc, unsigned DiagID,
const std::string &Msg1, const std::string &Msg2,
SourceRange R1, SourceRange R2);
virtual void DeleteExpr(ExprTy *E);
virtual void DeleteStmt(StmtTy *S);
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType GetTypeForDeclarator(Declarator &D, Scope *S);
virtual TypeResult ParseTypeName(Scope *S, Declarator &D);
virtual TypeResult ParseParamDeclaratorType(Scope *S, Declarator &D);
private:
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
virtual DeclTy *isTypeName(const IdentifierInfo &II, Scope *S) const;
virtual DeclTy *ParseDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup);
void AddInitializerToDecl(DeclTy *dcl, ExprTy *init);
virtual DeclTy *FinalizeDeclaratorGroup(Scope *S, DeclTy *Group);
virtual DeclTy *ParseStartOfFunctionDef(Scope *S, Declarator &D);
virtual DeclTy *ParseFunctionDefBody(DeclTy *Decl, StmtTy *Body);
virtual void PopScope(SourceLocation Loc, Scope *S);
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
virtual DeclTy *ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS);
virtual DeclTy *ParseTag(Scope *S, unsigned TagType, TagKind TK,
SourceLocation KWLoc, IdentifierInfo *Name,
SourceLocation NameLoc, AttributeList *Attr);
virtual DeclTy *ParseField(Scope *S, DeclTy *TagDecl,SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth);
virtual void ParseRecordBody(SourceLocation RecLoc, DeclTy *TagDecl,
DeclTy **Fields, unsigned NumFields);
virtual DeclTy *ParseEnumConstant(Scope *S, DeclTy *EnumDecl,
DeclTy *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *Val);
virtual void ParseEnumBody(SourceLocation EnumLoc, DeclTy *EnumDecl,
DeclTy **Elements, unsigned NumElements);
private:
/// Subroutines of ParseDeclarator()...
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, Decl *LastDeclarator);
TypedefDecl *MergeTypeDefDecl(TypedefDecl *New, Decl *Old);
FunctionDecl *MergeFunctionDecl(FunctionDecl *New, Decl *Old);
VarDecl *MergeVarDecl(VarDecl *New, Decl *Old);
/// AddTopLevelDecl - called after the decl has been fully processed.
/// Allows for bookkeeping and post-processing of each declaration.
void AddTopLevelDecl(Decl *current, Decl *last);
/// More parsing and symbol table subroutines...
ParmVarDecl *ParseParamDeclarator(DeclaratorChunk &FI, unsigned ArgNo,
Scope *FnBodyScope);
Decl *LookupScopedDecl(IdentifierInfo *II, unsigned NSI, SourceLocation IdLoc,
Scope *S);
Decl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S);
Decl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
// Decl attributes - this routine is the top level dispatcher.
void HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
AttributeList *declarator_postfix);
void HandleDeclAttribute(Decl *New, AttributeList *rawAttr);
// HandleVectorTypeAttribute - this attribute is only applicable to
// integral and float scalars, although arrays, pointers, and function
// return values are allowed in conjunction with this construct. Aggregates
// with this attribute are invalid, even if they are of the same size as a
// corresponding scalar.
// The raw attribute should contain precisely 1 argument, the vector size
// for the variable, measured in bytes. If curType and rawAttr are well
// formed, this routine will return a new vector type.
QualType HandleVectorTypeAttribute(QualType curType, AttributeList *rawAttr);
void HandleOCUVectorTypeAttribute(TypedefDecl *d, AttributeList *rawAttr);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
virtual StmtResult ParseExprStmt(ExprTy *Expr);
virtual StmtResult ParseNullStmt(SourceLocation SemiLoc);
virtual StmtResult ParseCompoundStmt(SourceLocation L, SourceLocation R,
StmtTy **Elts, unsigned NumElts,
bool isStmtExpr);
virtual StmtResult ParseDeclStmt(DeclTy *Decl);
virtual StmtResult ParseCaseStmt(SourceLocation CaseLoc, ExprTy *LHSVal,
SourceLocation DotDotDotLoc, ExprTy *RHSVal,
SourceLocation ColonLoc, StmtTy *SubStmt);
virtual StmtResult ParseDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc, StmtTy *SubStmt,
Scope *CurScope);
virtual StmtResult ParseLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
SourceLocation ColonLoc, StmtTy *SubStmt);
virtual StmtResult ParseIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
StmtTy *ThenVal, SourceLocation ElseLoc,
StmtTy *ElseVal);
virtual StmtResult StartSwitchStmt(ExprTy *Cond);
virtual StmtResult FinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
ExprTy *Body);
virtual StmtResult ParseWhileStmt(SourceLocation WhileLoc, ExprTy *Cond,
StmtTy *Body);
virtual StmtResult ParseDoStmt(SourceLocation DoLoc, StmtTy *Body,
SourceLocation WhileLoc, ExprTy *Cond);
virtual StmtResult ParseForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
StmtTy *First, ExprTy *Second, ExprTy *Third,
SourceLocation RParenLoc, StmtTy *Body);
virtual StmtResult ParseGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
IdentifierInfo *LabelII);
virtual StmtResult ParseIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
ExprTy *DestExp);
virtual StmtResult ParseContinueStmt(SourceLocation ContinueLoc,
Scope *CurScope);
virtual StmtResult ParseBreakStmt(SourceLocation GotoLoc, Scope *CurScope);
virtual StmtResult ParseReturnStmt(SourceLocation ReturnLoc,
ExprTy *RetValExp);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
// Primary Expressions.
virtual ExprResult ParseIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen);
virtual ExprResult ParsePreDefinedExpr(SourceLocation Loc,
tok::TokenKind Kind);
virtual ExprResult ParseNumericConstant(const Token &);
virtual ExprResult ParseCharacterConstant(const Token &);
virtual ExprResult ParseParenExpr(SourceLocation L, SourceLocation R,
ExprTy *Val);
/// ParseStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
virtual ExprResult ParseStringLiteral(const Token *Toks, unsigned NumToks);
// Binary/Unary Operators. 'Tok' is the token for the operator.
virtual ExprResult ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
ExprTy *Input);
virtual ExprResult
ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc);
virtual ExprResult ParsePostfixUnaryOp(SourceLocation OpLoc,
tok::TokenKind Kind, ExprTy *Input);
virtual ExprResult ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
ExprTy *Idx, SourceLocation RLoc);
virtual ExprResult ParseMemberReferenceExpr(ExprTy *Base,SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member);
/// ParseCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
virtual ExprResult ParseCallExpr(ExprTy *Fn, SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
virtual ExprResult ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op);
virtual ExprResult ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op);
virtual ExprResult ParseInitList(SourceLocation LParenLoc,
ExprTy **InitList, unsigned NumInit,
SourceLocation RParenLoc);
virtual ExprResult ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
ExprTy *LHS,ExprTy *RHS);
/// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
virtual ExprResult ParseConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprTy *Cond, ExprTy *LHS, ExprTy *RHS);
/// ParseAddrLabel - Parse the GNU address of label extension: "&&foo".
virtual ExprResult ParseAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
IdentifierInfo *LabelII);
virtual ExprResult ParseStmtExpr(SourceLocation LPLoc, StmtTy *SubStmt,
SourceLocation RPLoc); // "({..})"
/// __builtin_offsetof(type, a.b[123][456].c)
virtual ExprResult ParseBuiltinOffsetOf(SourceLocation BuiltinLoc,
SourceLocation TypeLoc, TypeTy *Arg1,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc);
// __builtin_types_compatible_p(type1, type2)
virtual ExprResult ParseTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
virtual ExprResult ParseChooseExpr(SourceLocation BuiltinLoc,
ExprTy *cond, ExprTy *expr1, ExprTy *expr2,
SourceLocation RPLoc);
/// ParseCXXCasts - Parse {dynamic,static,reinterpret,const}_cast's.
virtual ExprResult ParseCXXCasts(SourceLocation OpLoc, tok::TokenKind Kind,
SourceLocation LAngleBracketLoc, TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc, ExprTy *E,
SourceLocation RParenLoc);
/// ParseCXXBoolLiteral - Parse {true,false} literals.
virtual ExprResult ParseCXXBoolLiteral(SourceLocation OpLoc,
tok::TokenKind Kind);
// ParseObjCStringLiteral - Parse Objective-C string literals.
virtual ExprResult ParseObjCStringLiteral(ExprTy *string);
virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc);
// Objective-C declarations.
virtual DeclTy *ObjcStartClassInterface(SourceLocation AtInterafceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
IdentifierInfo **ProtocolNames, unsigned NumProtocols,
AttributeList *AttrList);
virtual DeclTy *ObjcClassDeclaration(Scope *S, SourceLocation AtClassLoc,
IdentifierInfo **IdentList,
unsigned NumElts);
virtual void ObjcAddMethodsToClass(DeclTy *ClassDecl,
DeclTy **allMethods, unsigned allNum);
virtual DeclTy *ObjcBuildMethodDeclaration(SourceLocation MethodLoc,
tok::TokenKind MethodType, TypeTy *ReturnType,
ObjcKeywordInfo *Keywords, unsigned NumKeywords,
AttributeList *AttrList);
virtual DeclTy *ObjcBuildMethodDeclaration(SourceLocation MethodLoc,
tok::TokenKind MethodType, TypeTy *ReturnType,
IdentifierInfo *SelectorName, AttributeList *AttrList);
virtual void ObjcAddInstanceVariable(DeclTy *ClassDec, DeclTy *Ivar,
tok::ObjCKeywordKind visibility);
private:
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
void UsualUnaryConversions(Expr *&expr);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
void DefaultFunctionArrayConversion(Expr *&expr);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
void DefaultArgumentPromotion(Expr *&expr);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr,
bool isCompAssign = false);
enum AssignmentCheckResult {
Compatible,
Incompatible,
PointerFromInt,
IntFromPointer,
IncompatiblePointer,
CompatiblePointerDiscardsQualifiers
};
// CheckAssignmentConstraints - Perform type checking for assignment,
// argument passing, variable initialization, and function return values.
// This routine is only used by the following two methods. C99 6.5.16.
AssignmentCheckResult CheckAssignmentConstraints(QualType lhs, QualType rhs);
// CheckSingleAssignmentConstraints - Currently used by ParseCallExpr,
// CheckAssignmentOperands, and ParseReturnStmt. Prior to type checking,
// this routine performs the default function/array converions.
AssignmentCheckResult CheckSingleAssignmentConstraints(QualType lhs,
Expr *&rExpr);
// CheckCompoundAssignmentConstraints - Type check without performing any
// conversions. For compound assignments, the "Check...Operands" methods
// perform the necessary conversions.
AssignmentCheckResult CheckCompoundAssignmentConstraints(QualType lhs,
QualType rhs);
// Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1)
AssignmentCheckResult CheckPointerTypesForAssignment(QualType lhsType,
QualType rhsType);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of ParseBinOp).
inline void InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckMultiplyDivideOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckRemainderOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckSubtractionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckShiftOperands( // C99 6.5.7
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckCompareOperands( // C99 6.5.8/9
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isRelational);
inline QualType CheckBitwiseOperands( // C99 6.5.[10...12]
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation OpLoc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
inline QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType);
inline QualType CheckCommaOperands( // C99 6.5.17
Expr *&lex, Expr *&rex, SourceLocation OpLoc);
inline QualType CheckConditionalOperands( // C99 6.5.15
Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc);
/// type checking unary operators (subroutines of ParseUnaryOp).
/// C99 6.5.3.1, 6.5.3.2, 6.5.3.4
QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc);
QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc);
QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc);
QualType CheckSizeOfAlignOfOperand(QualType type, SourceLocation loc,
bool isSizeof);
QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc);
/// type checking primary expressions.
QualType CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &Comp, SourceLocation CmpLoc);
/// type checking declaration initializers (C99 6.7.8)
bool CheckInitializer(Expr *&simpleInit_or_initList, QualType &declType,
bool isStatic);
bool CheckSingleInitializer(Expr *&simpleInit, QualType declType);
bool CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
bool isStatic, QualType ElementType);
void CheckVariableInitList(QualType DeclType, InitListExpr *IList,
QualType ElementType, bool isStatic,
int &nInitializers, bool &hadError);
void CheckConstantInitList(QualType DeclType, InitListExpr *IList,
QualType ElementType, bool isStatic,
int &nInitializers, bool &hadError);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
private:
bool CheckFunctionCall(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
FunctionDecl *FDecl,
Expr** Args, unsigned NumArgsInCall);
void CheckPrintfArguments(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
bool HasVAListArg, FunctionDecl *FDecl,
unsigned format_idx, Expr** Args,
unsigned NumArgsInCall);
void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc);
bool CheckBuiltinCFStringArgument(Expr* Arg);
};
} // end namespace clang
#endif

View File

@@ -1,623 +0,0 @@
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements extra semantic analysis beyond what is enforced
// by the C type system.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
bool
Sema::CheckFunctionCall(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
FunctionDecl *FDecl,
Expr** Args, unsigned NumArgsInCall) {
// Get the IdentifierInfo* for the called function.
IdentifierInfo *FnInfo = FDecl->getIdentifier();
if (FnInfo->getBuiltinID() ==
Builtin::BI__builtin___CFStringMakeConstantString) {
assert(NumArgsInCall == 1 &&
"Wrong number of arguments to builtin CFStringMakeConstantString");
return CheckBuiltinCFStringArgument(Args[0]);
}
// Search the KnownFunctionIDs for the identifier.
unsigned i = 0, e = id_num_known_functions;
for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
if (i == e) return false;
// Printf checking.
if (i <= id_vprintf) {
// Retrieve the index of the format string parameter and determine
// if the function is passed a va_arg argument.
unsigned format_idx = 0;
bool HasVAListArg = false;
switch (i) {
default: assert(false && "No format string argument index.");
case id_printf: format_idx = 0; break;
case id_fprintf: format_idx = 1; break;
case id_sprintf: format_idx = 1; break;
case id_snprintf: format_idx = 2; break;
case id_asprintf: format_idx = 1; HasVAListArg = true; break;
case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
case id_vfprintf: format_idx = 1; HasVAListArg = true; break;
case id_vsprintf: format_idx = 1; HasVAListArg = true; break;
case id_vprintf: format_idx = 0; HasVAListArg = true; break;
}
CheckPrintfArguments(Fn, LParenLoc, RParenLoc, HasVAListArg,
FDecl, format_idx, Args, NumArgsInCall);
}
return false;
}
/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
/// CFString constructor is correct
bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
// FIXME: This should go in a helper.
while (1) {
if (ParenExpr *PE = dyn_cast<ParenExpr>(Arg))
Arg = PE->getSubExpr();
else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
Arg = ICE->getSubExpr();
else
break;
}
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
if (!Literal || Literal->isWide()) {
Diag(Arg->getLocStart(),
diag::err_cfstring_literal_not_string_constant,
Arg->getSourceRange());
return true;
}
const char *Data = Literal->getStrData();
unsigned Length = Literal->getByteLength();
for (unsigned i = 0; i < Length; ++i) {
if (!isascii(Data[i])) {
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
diag::warn_cfstring_literal_contains_non_ascii_character,
Arg->getSourceRange());
break;
}
if (!Data[i]) {
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
diag::warn_cfstring_literal_contains_nul_character,
Arg->getSourceRange());
break;
}
}
return false;
}
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
/// correct use of format strings.
///
/// HasVAListArg - A predicate indicating whether the printf-like
/// function is passed an explicit va_arg argument (e.g., vprintf)
///
/// format_idx - The index into Args for the format string.
///
/// Improper format strings to functions in the printf family can be
/// the source of bizarre bugs and very serious security holes. A
/// good source of information is available in the following paper
/// (which includes additional references):
///
/// FormatGuard: Automatic Protection From printf Format String
/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
///
/// Functionality implemented:
///
/// We can statically check the following properties for string
/// literal format strings for non v.*printf functions (where the
/// arguments are passed directly):
//
/// (1) Are the number of format conversions equal to the number of
/// data arguments?
///
/// (2) Does each format conversion correctly match the type of the
/// corresponding data argument? (TODO)
///
/// Moreover, for all printf functions we can:
///
/// (3) Check for a missing format string (when not caught by type checking).
///
/// (4) Check for no-operation flags; e.g. using "#" with format
/// conversion 'c' (TODO)
///
/// (5) Check the use of '%n', a major source of security holes.
///
/// (6) Check for malformed format conversions that don't specify anything.
///
/// (7) Check for empty format strings. e.g: printf("");
///
/// (8) Check that the format string is a wide literal.
///
/// All of these checks can be done by parsing the format string.
///
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
void
Sema::CheckPrintfArguments(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
bool HasVAListArg, FunctionDecl *FDecl,
unsigned format_idx, Expr** Args,
unsigned NumArgsInCall) {
// CHECK: printf-like function is called with no format string.
if (format_idx >= NumArgsInCall) {
Diag(RParenLoc, diag::warn_printf_missing_format_string,
Fn->getSourceRange());
return;
}
Expr *OrigFormatExpr = Args[format_idx];
// FIXME: This should go in a helper.
while (1) {
if (ParenExpr *PE = dyn_cast<ParenExpr>(OrigFormatExpr))
OrigFormatExpr = PE->getSubExpr();
else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(OrigFormatExpr))
OrigFormatExpr = ICE->getSubExpr();
else
break;
}
// CHECK: format string is not a string literal.
//
// Dynamically generated format strings are difficult to
// automatically vet at compile time. Requiring that format strings
// are string literals: (1) permits the checking of format strings by
// the compiler and thereby (2) can practically remove the source of
// many format string exploits.
StringLiteral *FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
if (FExpr == NULL) {
Diag(Args[format_idx]->getLocStart(),
diag::warn_printf_not_string_constant, Fn->getSourceRange());
return;
}
// CHECK: is the format string a wide literal?
if (FExpr->isWide()) {
Diag(Args[format_idx]->getLocStart(),
diag::warn_printf_format_string_is_wide_literal,
Fn->getSourceRange());
return;
}
// Str - The format string. NOTE: this is NOT null-terminated!
const char * const Str = FExpr->getStrData();
// CHECK: empty format string?
const unsigned StrLen = FExpr->getByteLength();
if (StrLen == 0) {
Diag(Args[format_idx]->getLocStart(),
diag::warn_printf_empty_format_string, Fn->getSourceRange());
return;
}
// We process the format string using a binary state machine. The
// current state is stored in CurrentState.
enum {
state_OrdChr,
state_Conversion
} CurrentState = state_OrdChr;
// numConversions - The number of conversions seen so far. This is
// incremented as we traverse the format string.
unsigned numConversions = 0;
// numDataArgs - The number of data arguments after the format
// string. This can only be determined for non vprintf-like
// functions. For those functions, this value is 1 (the sole
// va_arg argument).
unsigned numDataArgs = NumArgsInCall-(format_idx+1);
// Inspect the format string.
unsigned StrIdx = 0;
// LastConversionIdx - Index within the format string where we last saw
// a '%' character that starts a new format conversion.
unsigned LastConversionIdx = 0;
for ( ; StrIdx < StrLen ; ++StrIdx ) {
// Is the number of detected conversion conversions greater than
// the number of matching data arguments? If so, stop.
if (!HasVAListArg && numConversions > numDataArgs) break;
// Handle "\0"
if(Str[StrIdx] == '\0' ) {
// The string returned by getStrData() is not null-terminated,
// so the presence of a null character is likely an error.
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),StrIdx+1);
Diag(Loc, diag::warn_printf_format_string_contains_null_char,
Fn->getSourceRange());
return;
}
// Ordinary characters (not processing a format conversion).
if (CurrentState == state_OrdChr) {
if (Str[StrIdx] == '%') {
CurrentState = state_Conversion;
LastConversionIdx = StrIdx;
}
continue;
}
// Seen '%'. Now processing a format conversion.
switch (Str[StrIdx]) {
// Characters which can terminate a format conversion
// (e.g. "%d"). Characters that specify length modifiers or
// other flags are handled by the default case below.
//
// TODO: additional checks will go into the following cases.
case 'i':
case 'd':
case 'o':
case 'u':
case 'x':
case 'X':
case 'D':
case 'O':
case 'U':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
case 'a':
case 'A':
case 'c':
case 'C':
case 'S':
case 's':
case 'p':
++numConversions;
CurrentState = state_OrdChr;
break;
// CHECK: Are we using "%n"? Issue a warning.
case 'n': {
++numConversions;
CurrentState = state_OrdChr;
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx+1);
Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
break;
}
// Handle "%%"
case '%':
// Sanity check: Was the first "%" character the previous one?
// If not, we will assume that we have a malformed format
// conversion, and that the current "%" character is the start
// of a new conversion.
if (StrIdx - LastConversionIdx == 1)
CurrentState = state_OrdChr;
else {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx+1);
Diag(Loc, diag::warn_printf_invalid_conversion,
std::string(Str+LastConversionIdx, Str+StrIdx),
Fn->getSourceRange());
// This conversion is broken. Advance to the next format
// conversion.
LastConversionIdx = StrIdx;
++numConversions;
}
break;
default:
// This case catches all other characters: flags, widths, etc.
// We should eventually process those as well.
break;
}
}
if (CurrentState == state_Conversion) {
// Issue a warning: invalid format conversion.
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx+1);
Diag(Loc, diag::warn_printf_invalid_conversion,
std::string(Str+LastConversionIdx,
Str+std::min(LastConversionIdx+2, StrLen)),
Fn->getSourceRange());
return;
}
if (!HasVAListArg) {
// CHECK: Does the number of format conversions exceed the number
// of data arguments?
if (numConversions > numDataArgs) {
SourceLocation Loc =
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
LastConversionIdx);
Diag(Loc, diag::warn_printf_insufficient_data_args,
Fn->getSourceRange());
}
// CHECK: Does the number of data arguments exceed the number of
// format conversions in the format string?
else if (numConversions < numDataArgs)
Diag(Args[format_idx+numConversions+1]->getLocStart(),
diag::warn_printf_too_many_data_args, Fn->getSourceRange());
}
}
//===--- CHECK: Return Address of Stack Variable --------------------------===//
static DeclRefExpr* EvalVal(Expr *E);
static DeclRefExpr* EvalAddr(Expr* E);
/// CheckReturnStackAddr - Check if a return statement returns the address
/// of a stack variable.
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc) {
// Perform checking for returned stack addresses.
if (lhsType->isPointerType()) {
if (DeclRefExpr *DR = EvalAddr(RetValExp))
Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
DR->getDecl()->getIdentifier()->getName(),
RetValExp->getSourceRange());
}
// Perform checking for stack values returned by reference.
else if (lhsType->isReferenceType()) {
// Check for an implicit cast to a reference.
if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
DR->getDecl()->getIdentifier()->getName(),
RetValExp->getSourceRange());
}
}
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
/// check if the expression in a return statement evaluates to an address
/// to a location on the stack. The recursion is used to traverse the
/// AST of the return expression, with recursion backtracking when we
/// encounter a subexpression that (1) clearly does not lead to the address
/// of a stack variable or (2) is something we cannot determine leads to
/// the address of a stack variable based on such local checking.
///
/// EvalAddr processes expressions that are pointers that are used as
/// references (and not L-values). EvalVal handles all other values.
/// At the base case of the recursion is a check for a DeclRefExpr* in
/// the refers to a stack variable.
///
/// This implementation handles:
///
/// * pointer-to-pointer casts
/// * implicit conversions from array references to pointers
/// * taking the address of fields
/// * arbitrary interplay between "&" and "*" operators
/// * pointer arithmetic from an address of a stack variable
/// * taking the address of an array element where the array is on the stack
static DeclRefExpr* EvalAddr(Expr *E) {
// We should only be called for evaluating pointer expressions.
assert (E->getType()->isPointerType() && "EvalAddr only works on pointers");
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
switch (E->getStmtClass()) {
case Stmt::ParenExprClass:
// Ignore parentheses.
return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
case Stmt::UnaryOperatorClass: {
// The only unary operator that make sense to handle here
// is AddrOf. All others don't make sense as pointers.
UnaryOperator *U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::AddrOf)
return EvalVal(U->getSubExpr());
else
return NULL;
}
case Stmt::BinaryOperatorClass: {
// Handle pointer arithmetic. All other binary operators are not valid
// in this context.
BinaryOperator *B = cast<BinaryOperator>(E);
BinaryOperator::Opcode op = B->getOpcode();
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
return NULL;
Expr *Base = B->getLHS();
// Determine which argument is the real pointer base. It could be
// the RHS argument instead of the LHS.
if (!Base->getType()->isPointerType()) Base = B->getRHS();
assert (Base->getType()->isPointerType());
return EvalAddr(Base);
}
// For conditional operators we need to see if either the LHS or RHS are
// valid DeclRefExpr*s. If one of them is valid, we return it.
case Stmt::ConditionalOperatorClass: {
ConditionalOperator *C = cast<ConditionalOperator>(E);
if (DeclRefExpr* LHS = EvalAddr(C->getLHS()))
return LHS;
else
return EvalAddr(C->getRHS());
}
// For implicit casts, we need to handle conversions from arrays to
// pointer values, and implicit pointer-to-pointer conversions.
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
Expr* SubExpr = IE->getSubExpr();
if (SubExpr->getType()->isPointerType())
return EvalAddr(SubExpr);
else
return EvalVal(SubExpr);
}
// For casts, we handle pointer-to-pointer conversions (which
// is essentially a no-op from our mini-interpreter's standpoint).
// For other casts we abort.
case Stmt::CastExprClass: {
CastExpr *C = cast<CastExpr>(E);
Expr *SubExpr = C->getSubExpr();
if (SubExpr->getType()->isPointerType())
return EvalAddr(SubExpr);
else
return NULL;
}
// C++ casts. For dynamic casts, static casts, and const casts, we
// are always converting from a pointer-to-pointer, so we just blow
// through the cast. In the case the dynamic cast doesn't fail
// (and return NULL), we take the conservative route and report cases
// where we return the address of a stack variable. For Reinterpre
case Stmt::CXXCastExprClass: {
CXXCastExpr *C = cast<CXXCastExpr>(E);
if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
Expr *S = C->getSubExpr();
if (S->getType()->isPointerType())
return EvalAddr(S);
else
return NULL;
}
else
return EvalAddr(C->getSubExpr());
}
// Everything else: we simply don't reason about them.
default:
return NULL;
}
}
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
/// See the comments for EvalAddr for more details.
static DeclRefExpr* EvalVal(Expr *E) {
// We should only be called for evaluating non-pointer expressions, or
// expressions with a pointer type that are not used as references but instead
// are l-values (e.g., DeclRefExpr with a pointer type).
// Our "symbolic interpreter" is just a dispatch off the currently
// viewed AST node. We then recursively traverse the AST by calling
// EvalAddr and EvalVal appropriately.
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass: {
// DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
// at code that refers to a variable's name. We check if it has local
// storage within the function, and if so, return the expression.
DeclRefExpr *DR = cast<DeclRefExpr>(E);
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
if(V->hasLocalStorage()) return DR;
return NULL;
}
case Stmt::ParenExprClass:
// Ignore parentheses.
return EvalVal(cast<ParenExpr>(E)->getSubExpr());
case Stmt::UnaryOperatorClass: {
// The only unary operator that make sense to handle here
// is Deref. All others don't resolve to a "name." This includes
// handling all sorts of rvalues passed to a unary operator.
UnaryOperator *U = cast<UnaryOperator>(E);
if (U->getOpcode() == UnaryOperator::Deref)
return EvalAddr(U->getSubExpr());
return NULL;
}
case Stmt::ArraySubscriptExprClass: {
// Array subscripts are potential references to data on the stack. We
// retrieve the DeclRefExpr* for the array variable if it indeed
// has local storage.
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
}
case Stmt::ConditionalOperatorClass: {
// For conditional operators we need to see if either the LHS or RHS are
// non-NULL DeclRefExpr's. If one is non-NULL, we return it.
ConditionalOperator *C = cast<ConditionalOperator>(E);
if (DeclRefExpr *LHS = EvalVal(C->getLHS()))
return LHS;
else
return EvalVal(C->getRHS());
}
// Accesses to members are potential references to data on the stack.
case Stmt::MemberExprClass: {
MemberExpr *M = cast<MemberExpr>(E);
// Check for indirect access. We only want direct field accesses.
if (!M->isArrow())
return EvalVal(M->getBase());
else
return NULL;
}
// Everything else: we simply don't reason about them.
default:
return NULL;
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,45 +0,0 @@
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ASTContext.h"
using namespace clang;
/// ParseCXXCasts - Parse {dynamic,static,reinterpret,const}_cast's.
Action::ExprResult
Sema::ParseCXXCasts(SourceLocation OpLoc, tok::TokenKind Kind,
SourceLocation LAngleBracketLoc, TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc, ExprTy *E,
SourceLocation RParenLoc) {
CXXCastExpr::Opcode Op;
switch (Kind) {
default: assert(0 && "Unknown C++ cast!");
case tok::kw_const_cast: Op = CXXCastExpr::ConstCast; break;
case tok::kw_dynamic_cast: Op = CXXCastExpr::DynamicCast; break;
case tok::kw_reinterpret_cast: Op = CXXCastExpr::ReinterpretCast; break;
case tok::kw_static_cast: Op = CXXCastExpr::StaticCast; break;
}
return new CXXCastExpr(Op, QualType::getFromOpaquePtr(Ty), (Expr*)E, OpLoc);
}
/// ParseCXXBoolLiteral - Parse {true,false} literals.
Action::ExprResult
Sema::ParseCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind != tok::kw_true || Kind != tok::kw_false) &&
"Unknown C++ Boolean value!");
return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
}

View File

@@ -1,617 +0,0 @@
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Stmt.h"
#include "clang/Parse/Scope.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Lex/IdentifierTable.h"
using namespace clang;
Sema::StmtResult Sema::ParseExprStmt(ExprTy *expr) {
Expr *E = static_cast<Expr*>(expr);
assert(E && "ParseExprStmt(): missing expression");
return E;
}
Sema::StmtResult Sema::ParseNullStmt(SourceLocation SemiLoc) {
return new NullStmt(SemiLoc);
}
Sema::StmtResult Sema::ParseDeclStmt(DeclTy *decl) {
if (decl)
return new DeclStmt(static_cast<Decl *>(decl));
else
return true; // error
}
Action::StmtResult
Sema::ParseCompoundStmt(SourceLocation L, SourceLocation R,
StmtTy **elts, unsigned NumElts, bool isStmtExpr) {
Stmt **Elts = reinterpret_cast<Stmt**>(elts);
// If we're in C89 mode, check that we don't have any decls after stmts. If
// so, emit an extension diagnostic.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
// Note that __extension__ can be around a decl.
unsigned i = 0;
// Skip over all declarations.
for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
/*empty*/;
// We found the end of the list or a statement. Scan for another declstmt.
for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
/*empty*/;
if (i != NumElts) {
Decl *D = cast<DeclStmt>(Elts[i])->getDecl();
Diag(D->getLocation(), diag::ext_mixed_decls_code);
}
}
// Warn about unused expressions in statements.
for (unsigned i = 0; i != NumElts; ++i) {
Expr *E = dyn_cast<Expr>(Elts[i]);
if (!E) continue;
// Warn about expressions with unused results.
if (E->hasLocalSideEffect() || E->getType()->isVoidType())
continue;
// The last expr in a stmt expr really is used.
if (isStmtExpr && i == NumElts-1)
continue;
/// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
/// a context where the result is unused. Emit a diagnostic to warn about
/// this.
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
Diag(BO->getOperatorLoc(), diag::warn_unused_expr,
BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange());
else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
Diag(UO->getOperatorLoc(), diag::warn_unused_expr,
UO->getSubExpr()->getSourceRange());
else
Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange());
}
return new CompoundStmt(Elts, NumElts, L, R);
}
Action::StmtResult
Sema::ParseCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
SourceLocation DotDotDotLoc, ExprTy *rhsval,
SourceLocation ColonLoc, StmtTy *subStmt) {
Stmt *SubStmt = static_cast<Stmt*>(subStmt);
Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
assert((LHSVal != 0) && "missing expression in case statement");
SourceLocation ExpLoc;
// C99 6.8.4.2p3: The expression shall be an integer constant.
if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
LHSVal->getSourceRange());
return SubStmt;
}
// GCC extension: The expression shall be an integer constant.
if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
RHSVal->getSourceRange());
RHSVal = 0; // Recover by just forgetting about it.
}
if (SwitchStack.empty()) {
Diag(CaseLoc, diag::err_case_not_in_switch);
return SubStmt;
}
CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
SwitchStack.back()->addSwitchCase(CS);
return CS;
}
Action::StmtResult
Sema::ParseDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
StmtTy *subStmt, Scope *CurScope) {
Stmt *SubStmt = static_cast<Stmt*>(subStmt);
if (SwitchStack.empty()) {
Diag(DefaultLoc, diag::err_default_not_in_switch);
return SubStmt;
}
DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
SwitchStack.back()->addSwitchCase(DS);
return DS;
}
Action::StmtResult
Sema::ParseLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
SourceLocation ColonLoc, StmtTy *subStmt) {
Stmt *SubStmt = static_cast<Stmt*>(subStmt);
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = LabelMap[II];
// If not forward referenced or defined already, just create a new LabelStmt.
if (LabelDecl == 0)
return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
assert(LabelDecl->getID() == II && "Label mismatch!");
// Otherwise, this label was either forward reference or multiply defined. If
// multiply defined, reject it now.
if (LabelDecl->getSubStmt()) {
Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName());
Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition);
return SubStmt;
}
// Otherwise, this label was forward declared, and we just found its real
// definition. Fill in the forward definition and return it.
LabelDecl->setIdentLoc(IdentLoc);
LabelDecl->setSubStmt(SubStmt);
return LabelDecl;
}
Action::StmtResult
Sema::ParseIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
StmtTy *ThenVal, SourceLocation ElseLoc,
StmtTy *ElseVal) {
Expr *condExpr = (Expr *)CondVal;
assert(condExpr && "ParseIfStmt(): missing expression");
DefaultFunctionArrayConversion(condExpr);
QualType condType = condExpr->getType();
if (!condType->isScalarType()) // C99 6.8.4.1p1
return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar,
condType.getAsString(), condExpr->getSourceRange());
return new IfStmt(IfLoc, condExpr, (Stmt*)ThenVal, (Stmt*)ElseVal);
}
Action::StmtResult
Sema::StartSwitchStmt(ExprTy *cond) {
Expr *Cond = static_cast<Expr*>(cond);
// C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
UsualUnaryConversions(Cond);
SwitchStmt *SS = new SwitchStmt(Cond);
SwitchStack.push_back(SS);
return SS;
}
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
unsigned NewWidth, bool NewSign,
SourceLocation Loc,
unsigned DiagID) {
// Perform a conversion to the promoted condition type if needed.
if (NewWidth > Val.getBitWidth()) {
// If this is an extension, just do it.
llvm::APSInt OldVal(Val);
Val.extend(NewWidth);
// If the input was signed and negative and the output is unsigned,
// warn.
if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
Diag(Loc, DiagID, OldVal.toString(), Val.toString());
Val.setIsSigned(NewSign);
} else if (NewWidth < Val.getBitWidth()) {
// If this is a truncation, check for overflow.
llvm::APSInt ConvVal(Val);
ConvVal.trunc(NewWidth);
ConvVal.setIsSigned(NewSign);
ConvVal.extend(Val.getBitWidth());
ConvVal.setIsSigned(Val.isSigned());
if (ConvVal != Val)
Diag(Loc, DiagID, Val.toString(), ConvVal.toString());
// Regardless of whether a diagnostic was emitted, really do the
// truncation.
Val.trunc(NewWidth);
Val.setIsSigned(NewSign);
} else if (NewSign != Val.isSigned()) {
// Convert the sign to match the sign of the condition. This can cause
// overflow as well: unsigned(INTMIN)
llvm::APSInt OldVal(Val);
Val.setIsSigned(NewSign);
if (Val.isNegative()) // Sign bit changes meaning.
Diag(Loc, DiagID, OldVal.toString(), Val.toString());
}
}
namespace {
struct CaseCompareFunctor {
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
const llvm::APSInt &RHS) {
return LHS.first < RHS;
}
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
return LHS.first < RHS.first;
}
bool operator()(const llvm::APSInt &LHS,
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
return LHS < RHS.first;
}
};
}
Action::StmtResult
Sema::FinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch, ExprTy *Body) {
Stmt *BodyStmt = (Stmt*)Body;
SwitchStmt *SS = SwitchStack.back();
assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
SS->setBody(BodyStmt, SwitchLoc);
SwitchStack.pop_back();
Expr *CondExpr = SS->getCond();
QualType CondType = CondExpr->getType();
if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer,
CondType.getAsString(), CondExpr->getSourceRange());
return true;
}
// Get the bitwidth of the switched-on value before promotions. We must
// convert the integer case values to this width before comparison.
unsigned CondWidth = Context.getTypeSize(CondType, SwitchLoc);
bool CondIsSigned = CondType->isSignedIntegerType();
// Accumulate all of the case values in a vector so that we can sort them
// and detect duplicates. This vector contains the APInt for the case after
// it has been converted to the condition type.
typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
CaseValsTy CaseVals;
// Keep track of any GNU case ranges we see. The APSInt is the low value.
std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
DefaultStmt *TheDefaultStmt = 0;
bool CaseListIsErroneous = false;
for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
if (TheDefaultStmt) {
Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label);
// FIXME: Remove the default statement from the switch block so that
// we'll return a valid AST. This requires recursing down the
// AST and finding it, not something we are set up to do right now. For
// now, just lop the entire switch stmt out of the AST.
CaseListIsErroneous = true;
}
TheDefaultStmt = DS;
} else {
CaseStmt *CS = cast<CaseStmt>(SC);
// We already verified that the expression has a i-c-e value (C99
// 6.8.4.2p3) - get that value now.
llvm::APSInt LoVal(32);
CS->getLHS()->isIntegerConstantExpr(LoVal, Context);
// Convert the value to the same width/sign as the condition.
ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
CS->getLHS()->getLocStart(),
diag::warn_case_value_overflow);
// If this is a case range, remember it in CaseRanges, otherwise CaseVals.
if (CS->getRHS())
CaseRanges.push_back(std::make_pair(LoVal, CS));
else
CaseVals.push_back(std::make_pair(LoVal, CS));
}
}
// Sort all the scalar case values so we can easily detect duplicates.
std::stable_sort(CaseVals.begin(), CaseVals.end());
if (!CaseVals.empty()) {
for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
if (CaseVals[i].first == CaseVals[i+1].first) {
// If we have a duplicate, report it.
Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
diag::err_duplicate_case, CaseVals[i].first.toString());
Diag(CaseVals[i].second->getLHS()->getLocStart(),
diag::err_duplicate_case_prev);
// FIXME: We really want to remove the bogus case stmt from the substmt,
// but we have no way to do this right now.
CaseListIsErroneous = true;
}
}
}
// Detect duplicate case ranges, which usually don't exist at all in the first
// place.
if (!CaseRanges.empty()) {
// Sort all the case ranges by their low value so we can easily detect
// overlaps between ranges.
std::stable_sort(CaseRanges.begin(), CaseRanges.end());
// Scan the ranges, computing the high values and removing empty ranges.
std::vector<llvm::APSInt> HiVals;
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
CaseStmt *CR = CaseRanges[i].second;
llvm::APSInt HiVal(32);
CR->getRHS()->isIntegerConstantExpr(HiVal, Context);
// Convert the value to the same width/sign as the condition.
ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
CR->getRHS()->getLocStart(),
diag::warn_case_value_overflow);
// If the low value is bigger than the high value, the case is empty.
if (CaseRanges[i].first > HiVal) {
Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range,
SourceRange(CR->getLHS()->getLocStart(),
CR->getRHS()->getLocEnd()));
CaseRanges.erase(CaseRanges.begin()+i);
--i, --e;
continue;
}
HiVals.push_back(HiVal);
}
// Rescan the ranges, looking for overlap with singleton values and other
// ranges. Since the range list is sorted, we only need to compare case
// ranges with their neighbors.
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
llvm::APSInt &CRLo = CaseRanges[i].first;
llvm::APSInt &CRHi = HiVals[i];
CaseStmt *CR = CaseRanges[i].second;
// Check to see whether the case range overlaps with any singleton cases.
CaseStmt *OverlapStmt = 0;
llvm::APSInt OverlapVal(32);
// Find the smallest value >= the lower bound. If I is in the case range,
// then we have overlap.
CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
CaseVals.end(), CRLo,
CaseCompareFunctor());
if (I != CaseVals.end() && I->first < CRHi) {
OverlapVal = I->first; // Found overlap with scalar.
OverlapStmt = I->second;
}
// Find the smallest value bigger than the upper bound.
I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
OverlapVal = (I-1)->first; // Found overlap with scalar.
OverlapStmt = (I-1)->second;
}
// Check to see if this case stmt overlaps with the subsequent case range.
if (i && CRLo <= HiVals[i-1]) {
OverlapVal = HiVals[i-1]; // Found overlap with range.
OverlapStmt = CaseRanges[i-1].second;
}
if (OverlapStmt) {
// If we have a duplicate, report it.
Diag(CR->getLHS()->getLocStart(),
diag::err_duplicate_case, OverlapVal.toString());
Diag(OverlapStmt->getLHS()->getLocStart(),
diag::err_duplicate_case_prev);
// FIXME: We really want to remove the bogus case stmt from the substmt,
// but we have no way to do this right now.
CaseListIsErroneous = true;
}
}
}
// FIXME: If the case list was broken is some way, we don't have a good system
// to patch it up. Instead, just return the whole substmt as broken.
if (CaseListIsErroneous)
return true;
return SS;
}
Action::StmtResult
Sema::ParseWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
Expr *condExpr = (Expr *)Cond;
assert(condExpr && "ParseWhileStmt(): missing expression");
DefaultFunctionArrayConversion(condExpr);
QualType condType = condExpr->getType();
if (!condType->isScalarType()) // C99 6.8.5p2
return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar,
condType.getAsString(), condExpr->getSourceRange());
return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
}
Action::StmtResult
Sema::ParseDoStmt(SourceLocation DoLoc, StmtTy *Body,
SourceLocation WhileLoc, ExprTy *Cond) {
Expr *condExpr = (Expr *)Cond;
assert(condExpr && "ParseDoStmt(): missing expression");
DefaultFunctionArrayConversion(condExpr);
QualType condType = condExpr->getType();
if (!condType->isScalarType()) // C99 6.8.5p2
return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar,
condType.getAsString(), condExpr->getSourceRange());
return new DoStmt((Stmt*)Body, condExpr, DoLoc);
}
Action::StmtResult
Sema::ParseForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
StmtTy *first, ExprTy *second, ExprTy *third,
SourceLocation RParenLoc, StmtTy *body) {
Stmt *First = static_cast<Stmt*>(first);
Expr *Second = static_cast<Expr*>(second);
Expr *Third = static_cast<Expr*>(third);
Stmt *Body = static_cast<Stmt*>(body);
if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
// C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
// identifiers for objects having storage class 'auto' or 'register'.
for (Decl *D = DS->getDecl(); D; D = D->getNextDeclarator()) {
BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(D);
if (BVD && !BVD->hasLocalStorage())
BVD = 0;
if (BVD == 0)
Diag(D->getLocation(), diag::err_non_variable_decl_in_for);
// FIXME: mark decl erroneous!
}
}
if (Second) {
DefaultFunctionArrayConversion(Second);
QualType SecondType = Second->getType();
if (!SecondType->isScalarType()) // C99 6.8.5p2
return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar,
SecondType.getAsString(), Second->getSourceRange());
}
return new ForStmt(First, Second, Third, Body, ForLoc);
}
Action::StmtResult
Sema::ParseGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
IdentifierInfo *LabelII) {
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = LabelMap[LabelII];
// If we haven't seen this label yet, create a forward reference.
if (LabelDecl == 0)
LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
}
Action::StmtResult
Sema::ParseIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
ExprTy *DestExp) {
// FIXME: Verify that the operand is convertible to void*.
return new IndirectGotoStmt((Expr*)DestExp);
}
Action::StmtResult
Sema::ParseContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
Scope *S = CurScope->getContinueParent();
if (!S) {
// C99 6.8.6.2p1: A break shall appear only in or as a loop body.
Diag(ContinueLoc, diag::err_continue_not_in_loop);
return true;
}
return new ContinueStmt(ContinueLoc);
}
Action::StmtResult
Sema::ParseBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
Scope *S = CurScope->getBreakParent();
if (!S) {
// C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
return true;
}
return new BreakStmt(BreakLoc);
}
Action::StmtResult
Sema::ParseReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
Expr *RetValExp = static_cast<Expr *>(rex);
QualType lhsType = CurFunctionDecl->getResultType();
if (lhsType->isVoidType()) {
if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns)
Diag(ReturnLoc, diag::ext_return_has_expr,
CurFunctionDecl->getIdentifier()->getName(),
RetValExp->getSourceRange());
return new ReturnStmt(ReturnLoc, RetValExp);
} else {
if (!RetValExp) {
const char *funcName = CurFunctionDecl->getIdentifier()->getName();
if (getLangOptions().C99) // C99 6.8.6.4p1 (ext_ since GCC warns)
Diag(ReturnLoc, diag::ext_return_missing_expr, funcName);
else // C90 6.6.6.4p4
Diag(ReturnLoc, diag::warn_return_missing_expr, funcName);
return new ReturnStmt(ReturnLoc, (Expr*)0);
}
}
// we have a non-void function with an expression, continue checking
QualType rhsType = RetValExp->getType();
// C99 6.8.6.4p3(136): The return statement is not an assignment. The
// overlap restriction of subclause 6.5.16.1 does not apply to the case of
// function return.
AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType,
RetValExp);
// decode the result (notice that extensions still return a type).
switch (result) {
case Compatible:
break;
case Incompatible:
Diag(ReturnLoc, diag::err_typecheck_return_incompatible,
lhsType.getAsString(), rhsType.getAsString(),
RetValExp->getSourceRange());
break;
case PointerFromInt:
// check for null pointer constant (C99 6.3.2.3p3)
if (!RetValExp->isNullPointerConstant(Context)) {
Diag(ReturnLoc, diag::ext_typecheck_return_pointer_int,
lhsType.getAsString(), rhsType.getAsString(),
RetValExp->getSourceRange());
}
break;
case IntFromPointer:
Diag(ReturnLoc, diag::ext_typecheck_return_pointer_int,
lhsType.getAsString(), rhsType.getAsString(),
RetValExp->getSourceRange());
break;
case IncompatiblePointer:
Diag(ReturnLoc, diag::ext_typecheck_return_incompatible_pointer,
lhsType.getAsString(), rhsType.getAsString(),
RetValExp->getSourceRange());
break;
case CompatiblePointerDiscardsQualifiers:
Diag(ReturnLoc, diag::ext_typecheck_return_discards_qualifiers,
lhsType.getAsString(), rhsType.getAsString(),
RetValExp->getSourceRange());
break;
}
if (RetValExp) CheckReturnStackAddr(RetValExp, lhsType, ReturnLoc);
return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
}

View File

@@ -1,348 +0,0 @@
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Lex/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
using namespace clang;
/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
/// type object. This returns null on error.
static QualType ConvertDeclSpecToType(const DeclSpec &DS, ASTContext &Ctx) {
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
// checking.
switch (DS.getTypeSpecType()) {
default: return QualType(); // FIXME: Handle unimp cases!
case DeclSpec::TST_void: return Ctx.VoidTy;
case DeclSpec::TST_char:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
return Ctx.CharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
return Ctx.SignedCharTy;
else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
return Ctx.UnsignedCharTy;
}
case DeclSpec::TST_unspecified: // Unspecific typespec defaults to int.
case DeclSpec::TST_int: {
QualType Result;
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Ctx.IntTy; break;
case DeclSpec::TSW_short: Result = Ctx.ShortTy; break;
case DeclSpec::TSW_long: Result = Ctx.LongTy; break;
case DeclSpec::TSW_longlong: Result = Ctx.LongLongTy; break;
}
} else {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Ctx.UnsignedIntTy; break;
case DeclSpec::TSW_short: Result = Ctx.UnsignedShortTy; break;
case DeclSpec::TSW_long: Result = Ctx.UnsignedLongTy; break;
case DeclSpec::TSW_longlong: Result = Ctx.UnsignedLongLongTy; break;
}
}
// Handle complex integer types.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
return Result;
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
"FIXME: imaginary types not supported yet!");
return Ctx.getComplexType(Result);
}
case DeclSpec::TST_float:
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
return Ctx.FloatTy;
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
"FIXME: imaginary types not supported yet!");
return Ctx.getComplexType(Ctx.FloatTy);
case DeclSpec::TST_double: {
bool isLong = DS.getTypeSpecWidth() == DeclSpec::TSW_long;
QualType T = isLong ? Ctx.LongDoubleTy : Ctx.DoubleTy;
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
return T;
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
"FIXME: imaginary types not supported yet!");
return Ctx.getComplexType(T);
}
case DeclSpec::TST_bool: // _Bool or bool
return Ctx.BoolTy;
case DeclSpec::TST_decimal32: // _Decimal32
case DeclSpec::TST_decimal64: // _Decimal64
case DeclSpec::TST_decimal128: // _Decimal128
assert(0 && "FIXME: GNU decimal extensions not supported yet!");
case DeclSpec::TST_enum:
case DeclSpec::TST_union:
case DeclSpec::TST_struct: {
Decl *D = static_cast<Decl *>(DS.getTypeRep());
assert(D && "Didn't get a decl for a enum/union/struct?");
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
// TypeQuals handled by caller.
return Ctx.getTagDeclType(cast<TagDecl>(D));
}
case DeclSpec::TST_typedef: {
Decl *D = static_cast<Decl *>(DS.getTypeRep());
assert(D && "Didn't get a decl for a typedef?");
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
// FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
// we have this "hack" for now...
if (isa<ObjcInterfaceDecl>(D))
return Ctx.getObjcInterfaceType(cast<ObjcInterfaceDecl>(D));
// TypeQuals handled by caller.
return Ctx.getTypedefType(cast<TypedefDecl>(D));
}
case DeclSpec::TST_typeofType: {
QualType T = QualType::getFromOpaquePtr(DS.getTypeRep());
assert(!T.isNull() && "Didn't get a type for typeof?");
// TypeQuals handled by caller.
return Ctx.getTypeOfType(T);
}
case DeclSpec::TST_typeofExpr: {
Expr *E = static_cast<Expr *>(DS.getTypeRep());
assert(E && "Didn't get an expression for typeof?");
// TypeQuals handled by caller.
return Ctx.getTypeOfExpr(E);
}
}
}
/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
/// instances.
QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
QualType T = ConvertDeclSpecToType(D.getDeclSpec(), Context);
// Apply const/volatile/restrict qualifiers to T.
T = T.getQualifiedType(D.getDeclSpec().getTypeQualifiers());
// Walk the DeclTypeInfo, building the recursive type as we go. DeclTypeInfos
// are ordered from the identifier out, which is opposite of what we want :).
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
const DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
switch (DeclType.Kind) {
default: assert(0 && "Unknown decltype!");
case DeclaratorChunk::Pointer:
if (T->isReferenceType()) {
// C++ 8.3.2p4: There shall be no ... pointers to references ...
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_pointer_to_reference,
D.getIdentifier()->getName());
D.setInvalidType(true);
T = Context.IntTy;
}
// Apply the pointer typequals to the pointer object.
T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
break;
case DeclaratorChunk::Reference:
if (const ReferenceType *RT = T->getAsReferenceType()) {
// C++ 8.3.2p4: There shall be no references to references ...
Diag(D.getIdentifierLoc(),
diag::err_illegal_decl_reference_to_reference,
D.getIdentifier()->getName());
D.setInvalidType(true);
T = RT->getReferenceeType();
}
T = Context.getReferenceType(T);
break;
case DeclaratorChunk::Array: {
const DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
ArrayType::ArraySizeModifier ASM;
if (ATI.isStar)
ASM = ArrayType::Star;
else if (ATI.hasStatic)
ASM = ArrayType::Static;
else
ASM = ArrayType::Normal;
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
if (T->isIncompleteType()) {
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
T.getAsString());
T = Context.IntTy;
D.setInvalidType(true);
} else if (T->isFunctionType()) {
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
D.getIdentifier()->getName());
T = Context.getPointerType(T);
D.setInvalidType(true);
} else if (const ReferenceType *RT = T->getAsReferenceType()) {
// C++ 8.3.2p4: There shall be no ... arrays of references ...
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
D.getIdentifier()->getName());
T = RT->getReferenceeType();
D.setInvalidType(true);
} else if (const RecordType *EltTy = T->getAsRecordType()) {
// If the element type is a struct or union that contains a variadic
// array, reject it: C99 6.7.2.1p2.
if (EltTy->getDecl()->hasFlexibleArrayMember()) {
Diag(DeclType.Loc, diag::err_flexible_array_in_array,
T.getAsString());
T = Context.IntTy;
D.setInvalidType(true);
}
}
// C99 6.7.5.2p1: The size expression shall have integer type.
if (ArraySize && !ArraySize->getType()->isIntegerType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
ArraySize->getType().getAsString(), ArraySize->getSourceRange());
D.setInvalidType(true);
}
llvm::APSInt ConstVal(32);
// If no expression was provided, we consider it a VLA.
if (!ArraySize || !ArraySize->isIntegerConstantExpr(ConstVal, Context))
T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
else {
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
// have a value greater than zero.
if (ConstVal.isSigned()) {
if (ConstVal.isNegative()) {
Diag(ArraySize->getLocStart(),
diag::err_typecheck_negative_array_size,
ArraySize->getSourceRange());
D.setInvalidType(true);
} else if (ConstVal == 0) {
// GCC accepts zero sized static arrays.
Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
ArraySize->getSourceRange());
}
}
T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
}
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
if (!getLangOptions().C99 &&
(ASM != ArrayType::Normal ||
(ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
Diag(D.getIdentifierLoc(), diag::ext_vla);
break;
}
case DeclaratorChunk::Function:
// If the function declarator has a prototype (i.e. it is not () and
// does not have a K&R-style identifier list), then the arguments are part
// of the type, otherwise the argument list is ().
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
if (!FTI.hasPrototype) {
// Simple void foo(), where the incoming T is the result type.
T = Context.getFunctionTypeNoProto(T);
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
if (FTI.NumArgs != 0)
Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
} else {
// Otherwise, we have a function with an argument list that is
// potentially variadic.
llvm::SmallVector<QualType, 16> ArgTys;
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
QualType ArgTy = QualType::getFromOpaquePtr(FTI.ArgInfo[i].TypeInfo);
assert(!ArgTy.isNull() && "Couldn't parse type?");
//
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
// This matches the conversion that is done in
// Sema::ParseParamDeclarator(). Without this conversion, the
// argument type in the function prototype *will not* match the
// type in ParmVarDecl (which makes the code generator unhappy).
//
// FIXME: We still apparently need the conversion in
// Sema::ParseParamDeclarator(). This doesn't make any sense, since
// it should be driving off the type being created here.
//
// FIXME: If a source translation tool needs to see the original type,
// then we need to consider storing both types somewhere...
//
if (const ArrayType *AT = ArgTy->getAsArrayType())
ArgTy = Context.getPointerType(AT->getElementType());
else if (ArgTy->isFunctionType())
ArgTy = Context.getPointerType(ArgTy);
// Look for 'void'. void is allowed only as a single argument to a
// function with no other parameters (C99 6.7.5.3p10). We record
// int(void) as a FunctionTypeProto with an empty argument list.
else if (ArgTy->isVoidType()) {
// If this is something like 'float(int, void)', reject it. 'void'
// is an incomplete type (C99 6.2.5p19) and function decls cannot
// have arguments of incomplete type.
if (FTI.NumArgs != 1 || FTI.isVariadic) {
Diag(DeclType.Loc, diag::err_void_only_param);
ArgTy = Context.IntTy;
FTI.ArgInfo[i].TypeInfo = ArgTy.getAsOpaquePtr();
} else if (FTI.ArgInfo[i].Ident) {
// Reject, but continue to parse 'int(void abc)'.
Diag(FTI.ArgInfo[i].IdentLoc,
diag::err_param_with_void_type);
ArgTy = Context.IntTy;
FTI.ArgInfo[i].TypeInfo = ArgTy.getAsOpaquePtr();
} else {
// Reject, but continue to parse 'float(const void)'.
if (ArgTy.getQualifiers())
Diag(DeclType.Loc, diag::err_void_param_qualified);
// Do not add 'void' to the ArgTys list.
break;
}
}
ArgTys.push_back(ArgTy);
}
T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
FTI.isVariadic);
}
break;
}
}
return T;
}
Sema::TypeResult Sema::ParseTypeName(Scope *S, Declarator &D) {
// C99 6.7.6: Type names have no identifier. This is already validated by
// the parser.
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
QualType T = GetTypeForDeclarator(D, S);
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
// In this context, we *do not* check D.getInvalidType(). If the declarator
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
// though it will not reflect the user specified type.
return T.getAsOpaquePtr();
}
// Called from Parser::ParseParenDeclarator().
Sema::TypeResult Sema::ParseParamDeclaratorType(Scope *S, Declarator &D) {
// Note: parameters have identifiers, but we don't care about them here, we
// just want the type converted.
QualType T = GetTypeForDeclarator(D, S);
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
// In this context, we *do not* check D.getInvalidType(). If the declarator
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
// though it will not reflect the user specified type.
return T.getAsOpaquePtr();
}

View File

@@ -1,29 +0,0 @@
//===---------------------------------------------------------------------===//
// Minor random things that can be improved
//===---------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
Lexer-related diagnostics should point to the problematic character, not the
start of the token. For example:
int y = 0000\
00080;
diag.c:4:9: error: invalid digit '8' in octal constant
int y = 0000\
^
should be:
diag.c:4:9: error: invalid digit '8' in octal constant
00080;
^
This specific diagnostic is implemented, but others should be updated.
//===---------------------------------------------------------------------===//

View File

@@ -1,880 +0,0 @@
// !$*UTF8*$!
{
archiveVersion = 1;
classes = {
};
objectVersion = 42;
objects = {
/* Begin PBXBuildFile section */
1A30A9E90B93A4C800201A91 /* ExprCXX.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1A30A9E80B93A4C800201A91 /* ExprCXX.h */; };
1A7342480C7B57D500122F56 /* CGObjC.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 1A7342470C7B57D500122F56 /* CGObjC.cpp */; };
1A869A700BA2164C008DA07A /* LiteralSupport.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1A869A6E0BA2164C008DA07A /* LiteralSupport.h */; };
1A869AA80BA21ABA008DA07A /* LiteralSupport.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 1A869AA70BA21ABA008DA07A /* LiteralSupport.cpp */; };
1ABC36940C7A4BDC006DB0AB /* CGBuiltin.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 1ABC36930C7A4BDC006DB0AB /* CGBuiltin.cpp */; };
35260CA50C7F75C000D66CE9 /* ExprCXX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 35260CA40C7F75C000D66CE9 /* ExprCXX.cpp */; };
355CF6840C90A8D400A08AA3 /* DeadStores.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 355CF6830C90A8D400A08AA3 /* DeadStores.cpp */; };
356EF9B50C8F7DDF006650F5 /* LiveVariables.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 356EF9B40C8F7DDF006650F5 /* LiveVariables.cpp */; };
84D9A8880C1A57E100AC7ABC /* AttributeList.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 84D9A8870C1A57E100AC7ABC /* AttributeList.cpp */; };
84D9A88C0C1A581300AC7ABC /* AttributeList.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = 84D9A88B0C1A581300AC7ABC /* AttributeList.h */; };
DE01DA490B12ADA300AC22CE /* PPCallbacks.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE01DA480B12ADA300AC22CE /* PPCallbacks.h */; };
DE06756C0C051CFE00EBBFD8 /* ParseExprCXX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE06756B0C051CFE00EBBFD8 /* ParseExprCXX.cpp */; };
DE06B73E0A8307640050E87E /* LangOptions.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE06B73D0A8307640050E87E /* LangOptions.h */; };
DE06BECB0A854E4B0050E87E /* Scope.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE06BECA0A854E4B0050E87E /* Scope.h */; };
DE06D4310A8BB52D0050E87E /* Parser.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE06D42F0A8BB52D0050E87E /* Parser.cpp */; };
DE06E8140A8FF9330050E87E /* Action.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE06E8130A8FF9330050E87E /* Action.h */; };
DE0FCA630A95859D00248FD5 /* Expr.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE0FCA620A95859D00248FD5 /* Expr.h */; };
DE0FCB340A9C21F100248FD5 /* Expr.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE0FCB330A9C21F100248FD5 /* Expr.cpp */; };
DE1733000B068B700080B521 /* ASTContext.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE1732FF0B068B700080B521 /* ASTContext.cpp */; };
DE17336E0B068DC20080B521 /* DeclSpec.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE17336D0B068DC20080B521 /* DeclSpec.cpp */; };
DE1733700B068DC60080B521 /* DeclSpec.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE17336F0B068DC60080B521 /* DeclSpec.h */; };
DE1F22030A7D852A00FBF588 /* Parser.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE1F22020A7D852A00FBF588 /* Parser.h */; };
DE224FF80C7AA98800D370A5 /* CGExprComplex.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE224FF70C7AA98800D370A5 /* CGExprComplex.cpp */; };
DE2252700C7E82D000D370A5 /* CGExprScalar.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE22526F0C7E82D000D370A5 /* CGExprScalar.cpp */; };
DE2255FC0C8004E600D370A5 /* ParseDeclCXX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE2255FB0C8004E600D370A5 /* ParseDeclCXX.cpp */; };
DE344AB80AE5DF6D00DBC861 /* HeaderSearch.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE344AB70AE5DF6D00DBC861 /* HeaderSearch.h */; };
DE344B540AE5E46C00DBC861 /* HeaderSearch.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE344B530AE5E46C00DBC861 /* HeaderSearch.cpp */; };
DE3450D70AEB543100DBC861 /* DirectoryLookup.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE3450D60AEB543100DBC861 /* DirectoryLookup.h */; };
DE3451580AEC176100DBC861 /* MacroExpander.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE3451570AEC176100DBC861 /* MacroExpander.cpp */; };
DE3452410AEF1A2D00DBC861 /* Stmt.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE3452400AEF1A2D00DBC861 /* Stmt.cpp */; };
DE3452810AEF1B1800DBC861 /* Stmt.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE3452800AEF1B1800DBC861 /* Stmt.h */; };
DE345C1A0AFC658B00DBC861 /* StmtVisitor.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE345C190AFC658B00DBC861 /* StmtVisitor.h */; };
DE345F220AFD347900DBC861 /* StmtNodes.def in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE345F210AFD347900DBC861 /* StmtNodes.def */; };
DE3460000AFDCC1900DBC861 /* ParseObjc.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE345FFF0AFDCC1900DBC861 /* ParseObjc.cpp */; };
DE3460050AFDCC6500DBC861 /* ParseInit.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE3460040AFDCC6500DBC861 /* ParseInit.cpp */; };
DE34600B0AFDCCBF00DBC861 /* ParseStmt.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE34600A0AFDCCBF00DBC861 /* ParseStmt.cpp */; };
DE34600F0AFDCCCE00DBC861 /* ParseDecl.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE34600E0AFDCCCE00DBC861 /* ParseDecl.cpp */; };
DE3460130AFDCCDA00DBC861 /* ParseExpr.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE3460120AFDCCDA00DBC861 /* ParseExpr.cpp */; };
DE3461270AFE68BE00DBC861 /* MinimalAction.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE3461260AFE68BE00DBC861 /* MinimalAction.cpp */; };
DE34621D0AFEB19B00DBC861 /* StmtPrinter.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE34621C0AFEB19B00DBC861 /* StmtPrinter.cpp */; };
DE3464220B03040900DBC861 /* Type.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE3464210B03040900DBC861 /* Type.h */; };
DE4264FC0C113592005A861D /* CGDecl.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE4264FB0C113592005A861D /* CGDecl.cpp */; };
DE46BF280AE0A82D00CC047C /* TargetInfo.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE46BF270AE0A82D00CC047C /* TargetInfo.h */; };
DE4772FA0C10EAE5002239E8 /* CGStmt.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE4772F90C10EAE5002239E8 /* CGStmt.cpp */; };
DE4772FC0C10EAEC002239E8 /* CGExpr.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE4772FB0C10EAEC002239E8 /* CGExpr.cpp */; };
DE5932D10AD60FF400BC794C /* clang.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE5932CD0AD60FF400BC794C /* clang.cpp */; };
DE5932D20AD60FF400BC794C /* clang.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE5932CE0AD60FF400BC794C /* clang.h */; };
DE5932D30AD60FF400BC794C /* PrintParserCallbacks.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE5932CF0AD60FF400BC794C /* PrintParserCallbacks.cpp */; };
DE5932D40AD60FF400BC794C /* PrintPreprocessedOutput.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE5932D00AD60FF400BC794C /* PrintPreprocessedOutput.cpp */; };
DE67E70B0C020EC500F66BC5 /* SemaType.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E70A0C020EC500F66BC5 /* SemaType.cpp */; };
DE67E70D0C020ECA00F66BC5 /* SemaStmt.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E70C0C020ECA00F66BC5 /* SemaStmt.cpp */; };
DE67E70F0C020ECF00F66BC5 /* SemaExprCXX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E70E0C020ECF00F66BC5 /* SemaExprCXX.cpp */; };
DE67E7110C020ED400F66BC5 /* SemaExpr.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E7100C020ED400F66BC5 /* SemaExpr.cpp */; };
DE67E7130C020ED900F66BC5 /* SemaDecl.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E7120C020ED900F66BC5 /* SemaDecl.cpp */; };
DE67E7150C020EDF00F66BC5 /* Sema.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE67E7140C020EDF00F66BC5 /* Sema.h */; };
DE67E7170C020EE400F66BC5 /* Sema.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E7160C020EE400F66BC5 /* Sema.cpp */; };
DE67E71A0C020F4F00F66BC5 /* ASTStreamer.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE67E7190C020F4F00F66BC5 /* ASTStreamer.cpp */; };
DE67E7280C02109800F66BC5 /* ASTStreamer.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE67E7270C02109800F66BC5 /* ASTStreamer.h */; };
DE6951C70C4D1F5D00A5826B /* RecordLayout.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE6951C60C4D1F5D00A5826B /* RecordLayout.h */; };
DE6954640C5121BD00A5826B /* Token.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE6954630C5121BD00A5826B /* Token.h */; };
DE75ED290B044DC90020CF81 /* ASTContext.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE75ED280B044DC90020CF81 /* ASTContext.h */; };
DE75EDF10B06880E0020CF81 /* Type.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE75EDF00B06880E0020CF81 /* Type.cpp */; };
DE927FFD0C055DE900231DA4 /* LLVMCodegen.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE927FFC0C055DE900231DA4 /* LLVMCodegen.cpp */; };
DE928B130C05659200231DA4 /* ModuleBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE928B120C05659200231DA4 /* ModuleBuilder.cpp */; };
DE928B200C0565B000231DA4 /* ModuleBuilder.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE928B1F0C0565B000231DA4 /* ModuleBuilder.h */; };
DE928B7D0C0A615100231DA4 /* CodeGenModule.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE928B7C0C0A615100231DA4 /* CodeGenModule.h */; };
DE928B7F0C0A615600231DA4 /* CodeGenModule.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE928B7E0C0A615600231DA4 /* CodeGenModule.cpp */; };
DE928B810C0A615B00231DA4 /* CodeGenFunction.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DE928B800C0A615B00231DA4 /* CodeGenFunction.h */; };
DE928B830C0A616000231DA4 /* CodeGenFunction.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DE928B820C0A616000231DA4 /* CodeGenFunction.cpp */; };
DEAEE98B0A5A2B970045101B /* MultipleIncludeOpt.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEAEE98A0A5A2B970045101B /* MultipleIncludeOpt.h */; };
DEAEED4B0A5AF89A0045101B /* NOTES.txt in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEAEED4A0A5AF89A0045101B /* NOTES.txt */; };
DEB0AEB90C2087A700718A22 /* TextDiagnostics.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEB0AEB80C2087A700718A22 /* TextDiagnostics.h */; };
DEB0AEBB0C2087AB00718A22 /* TextDiagnostics.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEB0AEBA0C2087AB00718A22 /* TextDiagnostics.cpp */; };
DEC63B1A0C7B940200DBF169 /* CFG.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEC63B190C7B940200DBF169 /* CFG.cpp */; };
DEC63B1C0C7B940600DBF169 /* CFG.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEC63B1B0C7B940600DBF169 /* CFG.h */; };
DEC82DC40C32D50A00BAC245 /* DiagChecker.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEC82DC30C32D50A00BAC245 /* DiagChecker.cpp */; };
DEC8D9910A9433CD00353FCA /* Decl.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEC8D9900A9433CD00353FCA /* Decl.h */; };
DEC8D9A40A94346E00353FCA /* AST.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEC8D9A30A94346E00353FCA /* AST.h */; };
DED626C90AE0C065001E80A4 /* TargetInfo.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED626C80AE0C065001E80A4 /* TargetInfo.cpp */; };
DED627030AE0C51D001E80A4 /* Targets.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED627020AE0C51D001E80A4 /* Targets.cpp */; };
DED62ABB0AE2EDF1001E80A4 /* Decl.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED62ABA0AE2EDF1001E80A4 /* Decl.cpp */; };
DED676D10B6C786700AAD4A3 /* Builtins.def in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED676D00B6C786700AAD4A3 /* Builtins.def */; };
DED676FA0B6C797B00AAD4A3 /* Builtins.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED676F90B6C797B00AAD4A3 /* Builtins.h */; };
DED677C90B6C854100AAD4A3 /* Builtins.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED677C80B6C854100AAD4A3 /* Builtins.cpp */; };
DED67AEE0B6DB92A00AAD4A3 /* X86Builtins.def in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED67AED0B6DB92A00AAD4A3 /* X86Builtins.def */; };
DED67AF00B6DB92F00AAD4A3 /* PPCBuiltins.def in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED67AEF0B6DB92F00AAD4A3 /* PPCBuiltins.def */; };
DED7D7410A524295003AD0FB /* Diagnostic.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7310A524295003AD0FB /* Diagnostic.h */; };
DED7D7420A524295003AD0FB /* DiagnosticKinds.def in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7320A524295003AD0FB /* DiagnosticKinds.def */; };
DED7D7430A524295003AD0FB /* FileManager.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7330A524295003AD0FB /* FileManager.h */; };
DED7D7450A524295003AD0FB /* SourceLocation.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7350A524295003AD0FB /* SourceLocation.h */; };
DED7D7460A524295003AD0FB /* SourceManager.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7360A524295003AD0FB /* SourceManager.h */; };
DED7D7470A524295003AD0FB /* TokenKinds.def in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7370A524295003AD0FB /* TokenKinds.def */; };
DED7D7480A524295003AD0FB /* TokenKinds.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7380A524295003AD0FB /* TokenKinds.h */; };
DED7D7490A524295003AD0FB /* IdentifierTable.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D73A0A524295003AD0FB /* IdentifierTable.h */; };
DED7D74A0A524295003AD0FB /* Lexer.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D73B0A524295003AD0FB /* Lexer.h */; };
DED7D74C0A524295003AD0FB /* MacroExpander.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D73D0A524295003AD0FB /* MacroExpander.h */; };
DED7D74D0A524295003AD0FB /* MacroInfo.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D73E0A524295003AD0FB /* MacroInfo.h */; };
DED7D74E0A524295003AD0FB /* Pragma.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D73F0A524295003AD0FB /* Pragma.h */; };
DED7D74F0A524295003AD0FB /* Preprocessor.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7400A524295003AD0FB /* Preprocessor.h */; };
DED7D77A0A5242C7003AD0FB /* Diagnostic.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D75D0A5242C7003AD0FB /* Diagnostic.cpp */; };
DED7D77B0A5242C7003AD0FB /* FileManager.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D75E0A5242C7003AD0FB /* FileManager.cpp */; };
DED7D7890A5242C7003AD0FB /* SourceManager.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D76D0A5242C7003AD0FB /* SourceManager.cpp */; };
DED7D78A0A5242C7003AD0FB /* TokenKinds.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D76E0A5242C7003AD0FB /* TokenKinds.cpp */; };
DED7D7C20A5242E6003AD0FB /* IdentifierTable.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D79D0A5242E6003AD0FB /* IdentifierTable.cpp */; };
DED7D7C30A5242E6003AD0FB /* Lexer.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D79E0A5242E6003AD0FB /* Lexer.cpp */; };
DED7D7C50A5242E6003AD0FB /* MacroInfo.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D7A00A5242E6003AD0FB /* MacroInfo.cpp */; };
DED7D7C70A5242E6003AD0FB /* PPExpressions.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D7A20A5242E6003AD0FB /* PPExpressions.cpp */; };
DED7D7C80A5242E6003AD0FB /* Pragma.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D7A30A5242E6003AD0FB /* Pragma.cpp */; };
DED7D7C90A5242E6003AD0FB /* Preprocessor.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D7A40A5242E6003AD0FB /* Preprocessor.cpp */; };
DED7D7D80A524302003AD0FB /* README.txt in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D7D70A524302003AD0FB /* README.txt */; };
DED7D9180A52518C003AD0FB /* ScratchBuffer.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DED7D9170A52518C003AD0FB /* ScratchBuffer.h */; };
DED7D9E50A5257F6003AD0FB /* ScratchBuffer.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DED7D9E40A5257F6003AD0FB /* ScratchBuffer.cpp */; };
DEEBBD440C19C5D200A9FE82 /* TODO.txt in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEEBBD430C19C5D200A9FE82 /* TODO.txt */; };
DEEBC3BA0C2363B800A9FE82 /* CodeGenTypes.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEEBC3B90C2363B800A9FE82 /* CodeGenTypes.h */; };
DEEBC3BC0C2363BC00A9FE82 /* CodeGenTypes.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEEBC3BB0C2363BC00A9FE82 /* CodeGenTypes.cpp */; };
DEEBCBE30C33702C00A9FE82 /* TextDiagnosticBuffer.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEEBCBE20C33702C00A9FE82 /* TextDiagnosticBuffer.h */; };
DEEBCBE50C33703100A9FE82 /* TextDiagnosticBuffer.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEEBCBE40C33703100A9FE82 /* TextDiagnosticBuffer.cpp */; };
DEF2E9320C5FB9FB000C4259 /* ASTStreamers.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEF2E9310C5FB9FB000C4259 /* ASTStreamers.h */; };
DEF2E9340C5FBA02000C4259 /* ASTStreamers.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEF2E9330C5FBA02000C4259 /* ASTStreamers.cpp */; };
DEF2E95F0C5FBD74000C4259 /* InternalsManual.html in CopyFiles */ = {isa = PBXBuildFile; fileRef = DEF2E95E0C5FBD74000C4259 /* InternalsManual.html */; };
DEF2EDA70C6A4252000C4259 /* StmtDumper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEF2EDA60C6A4252000C4259 /* StmtDumper.cpp */; };
DEF2EFF30C6CDD74000C4259 /* CGExprAgg.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEF2EFF20C6CDD74000C4259 /* CGExprAgg.cpp */; };
DEF2F0100C6CFED5000C4259 /* SemaChecking.cpp in Sources */ = {isa = PBXBuildFile; fileRef = DEF2F00F0C6CFED5000C4259 /* SemaChecking.cpp */; };
F0226FD20C18084500141F42 /* TextDiagnosticPrinter.cpp in Sources */ = {isa = PBXBuildFile; fileRef = F0226FD00C18084500141F42 /* TextDiagnosticPrinter.cpp */; };
F0226FD30C18084500141F42 /* TextDiagnosticPrinter.h in CopyFiles */ = {isa = PBXBuildFile; fileRef = F0226FD10C18084500141F42 /* TextDiagnosticPrinter.h */; };
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
8DD76F690486A84900D96B5E /* CopyFiles */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 8;
dstPath = /usr/share/man/man1/;
dstSubfolderSpec = 0;
files = (
DED7D7410A524295003AD0FB /* Diagnostic.h in CopyFiles */,
DED7D7420A524295003AD0FB /* DiagnosticKinds.def in CopyFiles */,
DED7D7430A524295003AD0FB /* FileManager.h in CopyFiles */,
DED7D7450A524295003AD0FB /* SourceLocation.h in CopyFiles */,
DED7D7460A524295003AD0FB /* SourceManager.h in CopyFiles */,
DED7D7470A524295003AD0FB /* TokenKinds.def in CopyFiles */,
DED7D7480A524295003AD0FB /* TokenKinds.h in CopyFiles */,
DED7D7490A524295003AD0FB /* IdentifierTable.h in CopyFiles */,
DED7D74A0A524295003AD0FB /* Lexer.h in CopyFiles */,
DED7D74C0A524295003AD0FB /* MacroExpander.h in CopyFiles */,
DED7D74D0A524295003AD0FB /* MacroInfo.h in CopyFiles */,
DED7D74E0A524295003AD0FB /* Pragma.h in CopyFiles */,
DED7D74F0A524295003AD0FB /* Preprocessor.h in CopyFiles */,
DED7D7D80A524302003AD0FB /* README.txt in CopyFiles */,
DED7D9180A52518C003AD0FB /* ScratchBuffer.h in CopyFiles */,
DEAEE98B0A5A2B970045101B /* MultipleIncludeOpt.h in CopyFiles */,
DEAEED4B0A5AF89A0045101B /* NOTES.txt in CopyFiles */,
DE1F22030A7D852A00FBF588 /* Parser.h in CopyFiles */,
DE06B73E0A8307640050E87E /* LangOptions.h in CopyFiles */,
DE06BECB0A854E4B0050E87E /* Scope.h in CopyFiles */,
DE06E8140A8FF9330050E87E /* Action.h in CopyFiles */,
DEC8D9910A9433CD00353FCA /* Decl.h in CopyFiles */,
DEC8D9A40A94346E00353FCA /* AST.h in CopyFiles */,
DE0FCA630A95859D00248FD5 /* Expr.h in CopyFiles */,
DE5932D20AD60FF400BC794C /* clang.h in CopyFiles */,
DE46BF280AE0A82D00CC047C /* TargetInfo.h in CopyFiles */,
DE344AB80AE5DF6D00DBC861 /* HeaderSearch.h in CopyFiles */,
DE3450D70AEB543100DBC861 /* DirectoryLookup.h in CopyFiles */,
DE3452810AEF1B1800DBC861 /* Stmt.h in CopyFiles */,
DE345C1A0AFC658B00DBC861 /* StmtVisitor.h in CopyFiles */,
DE345F220AFD347900DBC861 /* StmtNodes.def in CopyFiles */,
DE3464220B03040900DBC861 /* Type.h in CopyFiles */,
DE75ED290B044DC90020CF81 /* ASTContext.h in CopyFiles */,
DE1733700B068DC60080B521 /* DeclSpec.h in CopyFiles */,
DE01DA490B12ADA300AC22CE /* PPCallbacks.h in CopyFiles */,
DED676D10B6C786700AAD4A3 /* Builtins.def in CopyFiles */,
DED676FA0B6C797B00AAD4A3 /* Builtins.h in CopyFiles */,
DED67AEE0B6DB92A00AAD4A3 /* X86Builtins.def in CopyFiles */,
DED67AF00B6DB92F00AAD4A3 /* PPCBuiltins.def in CopyFiles */,
1A30A9E90B93A4C800201A91 /* ExprCXX.h in CopyFiles */,
1A869A700BA2164C008DA07A /* LiteralSupport.h in CopyFiles */,
DE67E7150C020EDF00F66BC5 /* Sema.h in CopyFiles */,
DE67E7280C02109800F66BC5 /* ASTStreamer.h in CopyFiles */,
DE928B200C0565B000231DA4 /* ModuleBuilder.h in CopyFiles */,
DE928B7D0C0A615100231DA4 /* CodeGenModule.h in CopyFiles */,
DE928B810C0A615B00231DA4 /* CodeGenFunction.h in CopyFiles */,
F0226FD30C18084500141F42 /* TextDiagnosticPrinter.h in CopyFiles */,
DEEBBD440C19C5D200A9FE82 /* TODO.txt in CopyFiles */,
84D9A88C0C1A581300AC7ABC /* AttributeList.h in CopyFiles */,
DEB0AEB90C2087A700718A22 /* TextDiagnostics.h in CopyFiles */,
DEEBC3BA0C2363B800A9FE82 /* CodeGenTypes.h in CopyFiles */,
DEEBCBE30C33702C00A9FE82 /* TextDiagnosticBuffer.h in CopyFiles */,
DE6951C70C4D1F5D00A5826B /* RecordLayout.h in CopyFiles */,
DE6954640C5121BD00A5826B /* Token.h in CopyFiles */,
DEF2E9320C5FB9FB000C4259 /* ASTStreamers.h in CopyFiles */,
DEF2E95F0C5FBD74000C4259 /* InternalsManual.html in CopyFiles */,
DEC63B1C0C7B940600DBF169 /* CFG.h in CopyFiles */,
);
runOnlyForDeploymentPostprocessing = 1;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
1A30A9E80B93A4C800201A91 /* ExprCXX.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = ExprCXX.h; path = clang/AST/ExprCXX.h; sourceTree = "<group>"; };
1A7342470C7B57D500122F56 /* CGObjC.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = CGObjC.cpp; path = CodeGen/CGObjC.cpp; sourceTree = "<group>"; };
1A869A6E0BA2164C008DA07A /* LiteralSupport.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = LiteralSupport.h; sourceTree = "<group>"; };
1A869AA70BA21ABA008DA07A /* LiteralSupport.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = LiteralSupport.cpp; sourceTree = "<group>"; };
1ABC36930C7A4BDC006DB0AB /* CGBuiltin.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = CGBuiltin.cpp; path = CodeGen/CGBuiltin.cpp; sourceTree = "<group>"; };
3523B4D30C985C53001D6CC3 /* CFGStmtVisitor.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = CFGStmtVisitor.h; path = clang/Analysis/CFGStmtVisitor.h; sourceTree = "<group>"; };
3523B4D50C985DAE001D6CC3 /* DataflowStmtVisitor.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DataflowStmtVisitor.h; path = clang/Analysis/DataflowStmtVisitor.h; sourceTree = "<group>"; };
35260CA40C7F75C000D66CE9 /* ExprCXX.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = ExprCXX.cpp; path = AST/ExprCXX.cpp; sourceTree = "<group>"; };
3547129D0C88881300B3E1D5 /* PrettyPrinter.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = PrettyPrinter.h; path = clang/AST/PrettyPrinter.h; sourceTree = "<group>"; };
355CF6820C90A8B600A08AA3 /* LocalCheckers.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = LocalCheckers.h; path = clang/Analysis/LocalCheckers.h; sourceTree = "<group>"; };
355CF6830C90A8D400A08AA3 /* DeadStores.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DeadStores.cpp; path = Analysis/DeadStores.cpp; sourceTree = "<group>"; };
356EF9B20C8F7DBA006650F5 /* LiveVariables.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = LiveVariables.h; path = clang/Analysis/LiveVariables.h; sourceTree = "<group>"; };
356EF9B40C8F7DDF006650F5 /* LiveVariables.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = LiveVariables.cpp; path = Analysis/LiveVariables.cpp; sourceTree = "<group>"; };
84D9A8870C1A57E100AC7ABC /* AttributeList.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = AttributeList.cpp; path = Parse/AttributeList.cpp; sourceTree = "<group>"; };
84D9A88B0C1A581300AC7ABC /* AttributeList.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = AttributeList.h; path = clang/Parse/AttributeList.h; sourceTree = "<group>"; };
8DD76F6C0486A84900D96B5E /* clang */ = {isa = PBXFileReference; explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = clang; sourceTree = BUILT_PRODUCTS_DIR; };
DE01DA480B12ADA300AC22CE /* PPCallbacks.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = PPCallbacks.h; sourceTree = "<group>"; };
DE06756B0C051CFE00EBBFD8 /* ParseExprCXX.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseExprCXX.cpp; path = Parse/ParseExprCXX.cpp; sourceTree = "<group>"; };
DE06B73D0A8307640050E87E /* LangOptions.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = LangOptions.h; sourceTree = "<group>"; };
DE06BECA0A854E4B0050E87E /* Scope.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Scope.h; path = clang/Parse/Scope.h; sourceTree = "<group>"; };
DE06D42F0A8BB52D0050E87E /* Parser.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Parser.cpp; path = Parse/Parser.cpp; sourceTree = "<group>"; };
DE06E8130A8FF9330050E87E /* Action.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Action.h; path = clang/Parse/Action.h; sourceTree = "<group>"; };
DE0FCA620A95859D00248FD5 /* Expr.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Expr.h; path = clang/AST/Expr.h; sourceTree = "<group>"; };
DE0FCB330A9C21F100248FD5 /* Expr.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Expr.cpp; path = AST/Expr.cpp; sourceTree = "<group>"; };
DE1732FF0B068B700080B521 /* ASTContext.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ASTContext.cpp; path = AST/ASTContext.cpp; sourceTree = "<group>"; };
DE17336D0B068DC20080B521 /* DeclSpec.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = DeclSpec.cpp; path = Parse/DeclSpec.cpp; sourceTree = "<group>"; };
DE17336F0B068DC60080B521 /* DeclSpec.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = DeclSpec.h; path = clang/Parse/DeclSpec.h; sourceTree = "<group>"; };
DE1F22020A7D852A00FBF588 /* Parser.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Parser.h; path = clang/Parse/Parser.h; sourceTree = "<group>"; };
DE224FF70C7AA98800D370A5 /* CGExprComplex.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CGExprComplex.cpp; path = CodeGen/CGExprComplex.cpp; sourceTree = "<group>"; };
DE22526F0C7E82D000D370A5 /* CGExprScalar.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CGExprScalar.cpp; path = CodeGen/CGExprScalar.cpp; sourceTree = "<group>"; };
DE2255FB0C8004E600D370A5 /* ParseDeclCXX.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseDeclCXX.cpp; path = Parse/ParseDeclCXX.cpp; sourceTree = "<group>"; };
DE344AB70AE5DF6D00DBC861 /* HeaderSearch.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = HeaderSearch.h; sourceTree = "<group>"; };
DE344B530AE5E46C00DBC861 /* HeaderSearch.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = HeaderSearch.cpp; sourceTree = "<group>"; };
DE3450D60AEB543100DBC861 /* DirectoryLookup.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = DirectoryLookup.h; sourceTree = "<group>"; };
DE3451570AEC176100DBC861 /* MacroExpander.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = MacroExpander.cpp; sourceTree = "<group>"; };
DE3452400AEF1A2D00DBC861 /* Stmt.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Stmt.cpp; path = AST/Stmt.cpp; sourceTree = "<group>"; };
DE3452800AEF1B1800DBC861 /* Stmt.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Stmt.h; path = clang/AST/Stmt.h; sourceTree = "<group>"; };
DE345C190AFC658B00DBC861 /* StmtVisitor.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = StmtVisitor.h; path = clang/AST/StmtVisitor.h; sourceTree = "<group>"; };
DE345F210AFD347900DBC861 /* StmtNodes.def */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; name = StmtNodes.def; path = clang/AST/StmtNodes.def; sourceTree = "<group>"; };
DE345FFF0AFDCC1900DBC861 /* ParseObjc.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseObjc.cpp; path = Parse/ParseObjc.cpp; sourceTree = "<group>"; };
DE3460040AFDCC6500DBC861 /* ParseInit.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseInit.cpp; path = Parse/ParseInit.cpp; sourceTree = "<group>"; };
DE34600A0AFDCCBF00DBC861 /* ParseStmt.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseStmt.cpp; path = Parse/ParseStmt.cpp; sourceTree = "<group>"; };
DE34600E0AFDCCCE00DBC861 /* ParseDecl.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseDecl.cpp; path = Parse/ParseDecl.cpp; sourceTree = "<group>"; };
DE3460120AFDCCDA00DBC861 /* ParseExpr.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ParseExpr.cpp; path = Parse/ParseExpr.cpp; sourceTree = "<group>"; };
DE3461260AFE68BE00DBC861 /* MinimalAction.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = MinimalAction.cpp; path = Parse/MinimalAction.cpp; sourceTree = "<group>"; };
DE34621C0AFEB19B00DBC861 /* StmtPrinter.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = StmtPrinter.cpp; path = AST/StmtPrinter.cpp; sourceTree = "<group>"; };
DE3464210B03040900DBC861 /* Type.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Type.h; path = clang/AST/Type.h; sourceTree = "<group>"; };
DE4264FB0C113592005A861D /* CGDecl.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CGDecl.cpp; path = CodeGen/CGDecl.cpp; sourceTree = "<group>"; };
DE46BF270AE0A82D00CC047C /* TargetInfo.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = TargetInfo.h; sourceTree = "<group>"; };
DE4772F90C10EAE5002239E8 /* CGStmt.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CGStmt.cpp; path = CodeGen/CGStmt.cpp; sourceTree = "<group>"; };
DE4772FB0C10EAEC002239E8 /* CGExpr.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CGExpr.cpp; path = CodeGen/CGExpr.cpp; sourceTree = "<group>"; };
DE5932CD0AD60FF400BC794C /* clang.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = clang.cpp; path = Driver/clang.cpp; sourceTree = "<group>"; };
DE5932CE0AD60FF400BC794C /* clang.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = clang.h; path = Driver/clang.h; sourceTree = "<group>"; };
DE5932CF0AD60FF400BC794C /* PrintParserCallbacks.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = PrintParserCallbacks.cpp; path = Driver/PrintParserCallbacks.cpp; sourceTree = "<group>"; };
DE5932D00AD60FF400BC794C /* PrintPreprocessedOutput.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = PrintPreprocessedOutput.cpp; path = Driver/PrintPreprocessedOutput.cpp; sourceTree = "<group>"; };
DE67E70A0C020EC500F66BC5 /* SemaType.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = SemaType.cpp; path = Sema/SemaType.cpp; sourceTree = "<group>"; };
DE67E70C0C020ECA00F66BC5 /* SemaStmt.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = SemaStmt.cpp; path = Sema/SemaStmt.cpp; sourceTree = "<group>"; };
DE67E70E0C020ECF00F66BC5 /* SemaExprCXX.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = SemaExprCXX.cpp; path = Sema/SemaExprCXX.cpp; sourceTree = "<group>"; };
DE67E7100C020ED400F66BC5 /* SemaExpr.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = SemaExpr.cpp; path = Sema/SemaExpr.cpp; sourceTree = "<group>"; };
DE67E7120C020ED900F66BC5 /* SemaDecl.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = SemaDecl.cpp; path = Sema/SemaDecl.cpp; sourceTree = "<group>"; };
DE67E7140C020EDF00F66BC5 /* Sema.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Sema.h; path = Sema/Sema.h; sourceTree = "<group>"; };
DE67E7160C020EE400F66BC5 /* Sema.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Sema.cpp; path = Sema/Sema.cpp; sourceTree = "<group>"; };
DE67E7190C020F4F00F66BC5 /* ASTStreamer.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ASTStreamer.cpp; path = Sema/ASTStreamer.cpp; sourceTree = "<group>"; };
DE67E7270C02109800F66BC5 /* ASTStreamer.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = ASTStreamer.h; path = clang/Sema/ASTStreamer.h; sourceTree = "<group>"; };
DE6951C60C4D1F5D00A5826B /* RecordLayout.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = RecordLayout.h; path = clang/AST/RecordLayout.h; sourceTree = "<group>"; };
DE6954630C5121BD00A5826B /* Token.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = Token.h; sourceTree = "<group>"; };
DE75ED280B044DC90020CF81 /* ASTContext.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = ASTContext.h; path = clang/AST/ASTContext.h; sourceTree = "<group>"; };
DE75EDF00B06880E0020CF81 /* Type.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Type.cpp; path = AST/Type.cpp; sourceTree = "<group>"; };
DE927FFC0C055DE900231DA4 /* LLVMCodegen.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = LLVMCodegen.cpp; path = Driver/LLVMCodegen.cpp; sourceTree = "<group>"; };
DE928B120C05659200231DA4 /* ModuleBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ModuleBuilder.cpp; path = CodeGen/ModuleBuilder.cpp; sourceTree = "<group>"; };
DE928B1F0C0565B000231DA4 /* ModuleBuilder.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = ModuleBuilder.h; path = clang/CodeGen/ModuleBuilder.h; sourceTree = "<group>"; };
DE928B7C0C0A615100231DA4 /* CodeGenModule.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = CodeGenModule.h; path = CodeGen/CodeGenModule.h; sourceTree = "<group>"; };
DE928B7E0C0A615600231DA4 /* CodeGenModule.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CodeGenModule.cpp; path = CodeGen/CodeGenModule.cpp; sourceTree = "<group>"; };
DE928B800C0A615B00231DA4 /* CodeGenFunction.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = CodeGenFunction.h; path = CodeGen/CodeGenFunction.h; sourceTree = "<group>"; };
DE928B820C0A616000231DA4 /* CodeGenFunction.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CodeGenFunction.cpp; path = CodeGen/CodeGenFunction.cpp; sourceTree = "<group>"; };
DEAEE98A0A5A2B970045101B /* MultipleIncludeOpt.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = MultipleIncludeOpt.h; sourceTree = "<group>"; };
DEAEED4A0A5AF89A0045101B /* NOTES.txt */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; path = NOTES.txt; sourceTree = "<group>"; };
DEB0AEB80C2087A700718A22 /* TextDiagnostics.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = TextDiagnostics.h; path = Driver/TextDiagnostics.h; sourceTree = "<group>"; };
DEB0AEBA0C2087AB00718A22 /* TextDiagnostics.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = TextDiagnostics.cpp; path = Driver/TextDiagnostics.cpp; sourceTree = "<group>"; };
DEC63B190C7B940200DBF169 /* CFG.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CFG.cpp; path = AST/CFG.cpp; sourceTree = "<group>"; };
DEC63B1B0C7B940600DBF169 /* CFG.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = CFG.h; path = clang/AST/CFG.h; sourceTree = "<group>"; };
DEC82DC30C32D50A00BAC245 /* DiagChecker.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = DiagChecker.cpp; path = Driver/DiagChecker.cpp; sourceTree = "<group>"; };
DEC8D9900A9433CD00353FCA /* Decl.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Decl.h; path = clang/AST/Decl.h; sourceTree = "<group>"; };
DEC8D9A30A94346E00353FCA /* AST.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = AST.h; path = clang/AST/AST.h; sourceTree = "<group>"; };
DED626C80AE0C065001E80A4 /* TargetInfo.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = TargetInfo.cpp; sourceTree = "<group>"; };
DED627020AE0C51D001E80A4 /* Targets.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Targets.cpp; path = Driver/Targets.cpp; sourceTree = "<group>"; };
DED62ABA0AE2EDF1001E80A4 /* Decl.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Decl.cpp; path = AST/Decl.cpp; sourceTree = "<group>"; usesTabs = 1; };
DED676D00B6C786700AAD4A3 /* Builtins.def */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; name = Builtins.def; path = clang/AST/Builtins.def; sourceTree = "<group>"; };
DED676F90B6C797B00AAD4A3 /* Builtins.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = Builtins.h; path = clang/AST/Builtins.h; sourceTree = "<group>"; };
DED677C80B6C854100AAD4A3 /* Builtins.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = Builtins.cpp; path = AST/Builtins.cpp; sourceTree = "<group>"; };
DED67AED0B6DB92A00AAD4A3 /* X86Builtins.def */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; name = X86Builtins.def; path = Driver/X86Builtins.def; sourceTree = "<group>"; };
DED67AEF0B6DB92F00AAD4A3 /* PPCBuiltins.def */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; name = PPCBuiltins.def; path = Driver/PPCBuiltins.def; sourceTree = "<group>"; };
DED7D7310A524295003AD0FB /* Diagnostic.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = Diagnostic.h; sourceTree = "<group>"; };
DED7D7320A524295003AD0FB /* DiagnosticKinds.def */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; path = DiagnosticKinds.def; sourceTree = "<group>"; };
DED7D7330A524295003AD0FB /* FileManager.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = FileManager.h; sourceTree = "<group>"; };
DED7D7350A524295003AD0FB /* SourceLocation.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = SourceLocation.h; sourceTree = "<group>"; };
DED7D7360A524295003AD0FB /* SourceManager.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = SourceManager.h; sourceTree = "<group>"; };
DED7D7370A524295003AD0FB /* TokenKinds.def */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; path = TokenKinds.def; sourceTree = "<group>"; };
DED7D7380A524295003AD0FB /* TokenKinds.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = TokenKinds.h; sourceTree = "<group>"; };
DED7D73A0A524295003AD0FB /* IdentifierTable.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = IdentifierTable.h; sourceTree = "<group>"; };
DED7D73B0A524295003AD0FB /* Lexer.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = Lexer.h; sourceTree = "<group>"; };
DED7D73D0A524295003AD0FB /* MacroExpander.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = MacroExpander.h; sourceTree = "<group>"; };
DED7D73E0A524295003AD0FB /* MacroInfo.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = MacroInfo.h; sourceTree = "<group>"; };
DED7D73F0A524295003AD0FB /* Pragma.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = Pragma.h; sourceTree = "<group>"; };
DED7D7400A524295003AD0FB /* Preprocessor.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = Preprocessor.h; sourceTree = "<group>"; };
DED7D75D0A5242C7003AD0FB /* Diagnostic.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = Diagnostic.cpp; sourceTree = "<group>"; };
DED7D75E0A5242C7003AD0FB /* FileManager.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = FileManager.cpp; sourceTree = "<group>"; };
DED7D76D0A5242C7003AD0FB /* SourceManager.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = SourceManager.cpp; sourceTree = "<group>"; };
DED7D76E0A5242C7003AD0FB /* TokenKinds.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = TokenKinds.cpp; sourceTree = "<group>"; };
DED7D79D0A5242E6003AD0FB /* IdentifierTable.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = IdentifierTable.cpp; sourceTree = "<group>"; };
DED7D79E0A5242E6003AD0FB /* Lexer.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = Lexer.cpp; sourceTree = "<group>"; };
DED7D7A00A5242E6003AD0FB /* MacroInfo.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = MacroInfo.cpp; sourceTree = "<group>"; };
DED7D7A20A5242E6003AD0FB /* PPExpressions.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = PPExpressions.cpp; sourceTree = "<group>"; };
DED7D7A30A5242E6003AD0FB /* Pragma.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = Pragma.cpp; sourceTree = "<group>"; };
DED7D7A40A5242E6003AD0FB /* Preprocessor.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = Preprocessor.cpp; sourceTree = "<group>"; };
DED7D7D70A524302003AD0FB /* README.txt */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; path = README.txt; sourceTree = "<group>"; };
DED7D9170A52518C003AD0FB /* ScratchBuffer.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; path = ScratchBuffer.h; sourceTree = "<group>"; };
DED7D9E40A5257F6003AD0FB /* ScratchBuffer.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; path = ScratchBuffer.cpp; sourceTree = "<group>"; };
DEEBBD430C19C5D200A9FE82 /* TODO.txt */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text; path = TODO.txt; sourceTree = "<group>"; };
DEEBC3B90C2363B800A9FE82 /* CodeGenTypes.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = CodeGenTypes.h; path = CodeGen/CodeGenTypes.h; sourceTree = "<group>"; };
DEEBC3BB0C2363BC00A9FE82 /* CodeGenTypes.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CodeGenTypes.cpp; path = CodeGen/CodeGenTypes.cpp; sourceTree = "<group>"; };
DEEBCBE20C33702C00A9FE82 /* TextDiagnosticBuffer.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = TextDiagnosticBuffer.h; path = Driver/TextDiagnosticBuffer.h; sourceTree = "<group>"; };
DEEBCBE40C33703100A9FE82 /* TextDiagnosticBuffer.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = TextDiagnosticBuffer.cpp; path = Driver/TextDiagnosticBuffer.cpp; sourceTree = "<group>"; };
DEF2E9310C5FB9FB000C4259 /* ASTStreamers.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = ASTStreamers.h; path = Driver/ASTStreamers.h; sourceTree = "<group>"; };
DEF2E9330C5FBA02000C4259 /* ASTStreamers.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = ASTStreamers.cpp; path = Driver/ASTStreamers.cpp; sourceTree = "<group>"; };
DEF2E95E0C5FBD74000C4259 /* InternalsManual.html */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = text.html; name = InternalsManual.html; path = docs/InternalsManual.html; sourceTree = "<group>"; };
DEF2EDA60C6A4252000C4259 /* StmtDumper.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = StmtDumper.cpp; path = AST/StmtDumper.cpp; sourceTree = "<group>"; };
DEF2EFF20C6CDD74000C4259 /* CGExprAgg.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = CGExprAgg.cpp; path = CodeGen/CGExprAgg.cpp; sourceTree = "<group>"; };
DEF2F00F0C6CFED5000C4259 /* SemaChecking.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = SemaChecking.cpp; path = Sema/SemaChecking.cpp; sourceTree = "<group>"; };
F0226FD00C18084500141F42 /* TextDiagnosticPrinter.cpp */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.cpp.cpp; name = TextDiagnosticPrinter.cpp; path = Driver/TextDiagnosticPrinter.cpp; sourceTree = "<group>"; };
F0226FD10C18084500141F42 /* TextDiagnosticPrinter.h */ = {isa = PBXFileReference; fileEncoding = 30; lastKnownFileType = sourcecode.c.h; name = TextDiagnosticPrinter.h; path = Driver/TextDiagnosticPrinter.h; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
8DD76F660486A84900D96B5E /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
08FB7794FE84155DC02AAC07 /* clang */ = {
isa = PBXGroup;
children = (
DED7D72E0A524295003AD0FB /* include */,
08FB7795FE84155DC02AAC07 /* Source */,
DEAEECAE0A5AF0FA0045101B /* Driver */,
C6859E8C029090F304C91782 /* Documentation */,
1AB674ADFE9D54B511CA2CBB /* Products */,
);
name = clang;
sourceTree = "<group>";
};
08FB7795FE84155DC02AAC07 /* Source */ = {
isa = PBXGroup;
children = (
DED7D7500A5242C7003AD0FB /* Basic */,
DED7D78C0A5242E6003AD0FB /* Lex */,
DE1F22600A7D8C9B00FBF588 /* Parse */,
DEC8D9920A9433F400353FCA /* AST */,
DE67E7070C020EAB00F66BC5 /* Sema */,
DE927FCC0C0557CD00231DA4 /* CodeGen */,
356EF9B30C8F7DCA006650F5 /* Analysis */,
);
name = Source;
sourceTree = "<group>";
};
1AB674ADFE9D54B511CA2CBB /* Products */ = {
isa = PBXGroup;
children = (
8DD76F6C0486A84900D96B5E /* clang */,
);
name = Products;
sourceTree = "<group>";
};
355CF6850C90A8D600A08AA3 /* LocalCheckers */ = {
isa = PBXGroup;
children = (
355CF6830C90A8D400A08AA3 /* DeadStores.cpp */,
);
name = LocalCheckers;
sourceTree = "<group>";
};
356EF9AF0C8F7DA4006650F5 /* Analysis */ = {
isa = PBXGroup;
children = (
3523B4D50C985DAE001D6CC3 /* DataflowStmtVisitor.h */,
3523B4D30C985C53001D6CC3 /* CFGStmtVisitor.h */,
355CF6820C90A8B600A08AA3 /* LocalCheckers.h */,
356EF9B20C8F7DBA006650F5 /* LiveVariables.h */,
);
name = Analysis;
sourceTree = "<group>";
};
356EF9B30C8F7DCA006650F5 /* Analysis */ = {
isa = PBXGroup;
children = (
356EF9B40C8F7DDF006650F5 /* LiveVariables.cpp */,
355CF6850C90A8D600A08AA3 /* LocalCheckers */,
);
name = Analysis;
sourceTree = "<group>";
};
C6859E8C029090F304C91782 /* Documentation */ = {
isa = PBXGroup;
children = (
DEAEED4A0A5AF89A0045101B /* NOTES.txt */,
DED7D7D70A524302003AD0FB /* README.txt */,
DEEBBD430C19C5D200A9FE82 /* TODO.txt */,
DEF2E95E0C5FBD74000C4259 /* InternalsManual.html */,
);
name = Documentation;
sourceTree = "<group>";
};
DE1F21F20A7D84E800FBF588 /* Parse */ = {
isa = PBXGroup;
children = (
84D9A88B0C1A581300AC7ABC /* AttributeList.h */,
DE06E8130A8FF9330050E87E /* Action.h */,
DE17336F0B068DC60080B521 /* DeclSpec.h */,
DE1F22020A7D852A00FBF588 /* Parser.h */,
DE06BECA0A854E4B0050E87E /* Scope.h */,
);
name = Parse;
sourceTree = "<group>";
};
DE1F22600A7D8C9B00FBF588 /* Parse */ = {
isa = PBXGroup;
children = (
84D9A8870C1A57E100AC7ABC /* AttributeList.cpp */,
DE3461260AFE68BE00DBC861 /* MinimalAction.cpp */,
DE06D42F0A8BB52D0050E87E /* Parser.cpp */,
DE3460040AFDCC6500DBC861 /* ParseInit.cpp */,
DE34600E0AFDCCCE00DBC861 /* ParseDecl.cpp */,
DE2255FB0C8004E600D370A5 /* ParseDeclCXX.cpp */,
DE3460120AFDCCDA00DBC861 /* ParseExpr.cpp */,
DE06756B0C051CFE00EBBFD8 /* ParseExprCXX.cpp */,
DE34600A0AFDCCBF00DBC861 /* ParseStmt.cpp */,
DE345FFF0AFDCC1900DBC861 /* ParseObjc.cpp */,
DE17336D0B068DC20080B521 /* DeclSpec.cpp */,
);
name = Parse;
sourceTree = "<group>";
};
DE67E7070C020EAB00F66BC5 /* Sema */ = {
isa = PBXGroup;
children = (
DE67E7190C020F4F00F66BC5 /* ASTStreamer.cpp */,
DE67E7140C020EDF00F66BC5 /* Sema.h */,
DE67E7160C020EE400F66BC5 /* Sema.cpp */,
DEF2F00F0C6CFED5000C4259 /* SemaChecking.cpp */,
DE67E7120C020ED900F66BC5 /* SemaDecl.cpp */,
DE67E7100C020ED400F66BC5 /* SemaExpr.cpp */,
DE67E70E0C020ECF00F66BC5 /* SemaExprCXX.cpp */,
DE67E70C0C020ECA00F66BC5 /* SemaStmt.cpp */,
DE67E70A0C020EC500F66BC5 /* SemaType.cpp */,
);
name = Sema;
sourceTree = "<group>";
};
DE67E7260C02108300F66BC5 /* Sema */ = {
isa = PBXGroup;
children = (
DE67E7270C02109800F66BC5 /* ASTStreamer.h */,
);
name = Sema;
sourceTree = "<group>";
};
DE927FCC0C0557CD00231DA4 /* CodeGen */ = {
isa = PBXGroup;
children = (
DE928B800C0A615B00231DA4 /* CodeGenFunction.h */,
DE928B820C0A616000231DA4 /* CodeGenFunction.cpp */,
DE928B7C0C0A615100231DA4 /* CodeGenModule.h */,
DE928B7E0C0A615600231DA4 /* CodeGenModule.cpp */,
DEEBC3BB0C2363BC00A9FE82 /* CodeGenTypes.cpp */,
DEEBC3B90C2363B800A9FE82 /* CodeGenTypes.h */,
1ABC36930C7A4BDC006DB0AB /* CGBuiltin.cpp */,
DE4264FB0C113592005A861D /* CGDecl.cpp */,
DE4772FB0C10EAEC002239E8 /* CGExpr.cpp */,
DEF2EFF20C6CDD74000C4259 /* CGExprAgg.cpp */,
DE224FF70C7AA98800D370A5 /* CGExprComplex.cpp */,
DE22526F0C7E82D000D370A5 /* CGExprScalar.cpp */,
1A7342470C7B57D500122F56 /* CGObjC.cpp */,
DE4772F90C10EAE5002239E8 /* CGStmt.cpp */,
DE928B120C05659200231DA4 /* ModuleBuilder.cpp */,
);
name = CodeGen;
sourceTree = "<group>";
};
DE928B140C05659A00231DA4 /* CodeGen */ = {
isa = PBXGroup;
children = (
DE928B1F0C0565B000231DA4 /* ModuleBuilder.h */,
);
name = CodeGen;
sourceTree = "<group>";
};
DEAEECAE0A5AF0FA0045101B /* Driver */ = {
isa = PBXGroup;
children = (
DE5932CD0AD60FF400BC794C /* clang.cpp */,
DE5932CE0AD60FF400BC794C /* clang.h */,
DEF2E9330C5FBA02000C4259 /* ASTStreamers.cpp */,
DEF2E9310C5FB9FB000C4259 /* ASTStreamers.h */,
DED67AEF0B6DB92F00AAD4A3 /* PPCBuiltins.def */,
DED67AED0B6DB92A00AAD4A3 /* X86Builtins.def */,
DEC82DC30C32D50A00BAC245 /* DiagChecker.cpp */,
DE927FFC0C055DE900231DA4 /* LLVMCodegen.cpp */,
DE5932CF0AD60FF400BC794C /* PrintParserCallbacks.cpp */,
DE5932D00AD60FF400BC794C /* PrintPreprocessedOutput.cpp */,
DED627020AE0C51D001E80A4 /* Targets.cpp */,
DEB0AEBA0C2087AB00718A22 /* TextDiagnostics.cpp */,
DEB0AEB80C2087A700718A22 /* TextDiagnostics.h */,
F0226FD00C18084500141F42 /* TextDiagnosticPrinter.cpp */,
F0226FD10C18084500141F42 /* TextDiagnosticPrinter.h */,
DEEBCBE40C33703100A9FE82 /* TextDiagnosticBuffer.cpp */,
DEEBCBE20C33702C00A9FE82 /* TextDiagnosticBuffer.h */,
);
name = Driver;
sourceTree = "<group>";
};
DEC8D98B0A9433BC00353FCA /* AST */ = {
isa = PBXGroup;
children = (
DEC8D9A30A94346E00353FCA /* AST.h */,
DE75ED280B044DC90020CF81 /* ASTContext.h */,
DED676D00B6C786700AAD4A3 /* Builtins.def */,
DED676F90B6C797B00AAD4A3 /* Builtins.h */,
DEC63B1B0C7B940600DBF169 /* CFG.h */,
DEC8D9900A9433CD00353FCA /* Decl.h */,
DE0FCA620A95859D00248FD5 /* Expr.h */,
1A30A9E80B93A4C800201A91 /* ExprCXX.h */,
DE6951C60C4D1F5D00A5826B /* RecordLayout.h */,
3547129D0C88881300B3E1D5 /* PrettyPrinter.h */,
DE3452800AEF1B1800DBC861 /* Stmt.h */,
DE345F210AFD347900DBC861 /* StmtNodes.def */,
DE345C190AFC658B00DBC861 /* StmtVisitor.h */,
DE3464210B03040900DBC861 /* Type.h */,
);
name = AST;
sourceTree = "<group>";
};
DEC8D9920A9433F400353FCA /* AST */ = {
isa = PBXGroup;
children = (
DE1732FF0B068B700080B521 /* ASTContext.cpp */,
DED677C80B6C854100AAD4A3 /* Builtins.cpp */,
DEC63B190C7B940200DBF169 /* CFG.cpp */,
DED62ABA0AE2EDF1001E80A4 /* Decl.cpp */,
DE0FCB330A9C21F100248FD5 /* Expr.cpp */,
35260CA40C7F75C000D66CE9 /* ExprCXX.cpp */,
DE3452400AEF1A2D00DBC861 /* Stmt.cpp */,
DE75EDF00B06880E0020CF81 /* Type.cpp */,
DEF2EDA60C6A4252000C4259 /* StmtDumper.cpp */,
DE34621C0AFEB19B00DBC861 /* StmtPrinter.cpp */,
);
name = AST;
sourceTree = "<group>";
};
DED7D72E0A524295003AD0FB /* include */ = {
isa = PBXGroup;
children = (
DED7D7300A524295003AD0FB /* Basic */,
DED7D7390A524295003AD0FB /* Lex */,
DE1F21F20A7D84E800FBF588 /* Parse */,
DEC8D98B0A9433BC00353FCA /* AST */,
DE67E7260C02108300F66BC5 /* Sema */,
DE928B140C05659A00231DA4 /* CodeGen */,
356EF9AF0C8F7DA4006650F5 /* Analysis */,
);
path = include;
sourceTree = "<group>";
};
DED7D7300A524295003AD0FB /* Basic */ = {
isa = PBXGroup;
children = (
DED7D7310A524295003AD0FB /* Diagnostic.h */,
DED7D7320A524295003AD0FB /* DiagnosticKinds.def */,
DED7D7330A524295003AD0FB /* FileManager.h */,
DE06B73D0A8307640050E87E /* LangOptions.h */,
DED7D7350A524295003AD0FB /* SourceLocation.h */,
DED7D7360A524295003AD0FB /* SourceManager.h */,
DE46BF270AE0A82D00CC047C /* TargetInfo.h */,
DED7D7370A524295003AD0FB /* TokenKinds.def */,
DED7D7380A524295003AD0FB /* TokenKinds.h */,
);
name = Basic;
path = clang/Basic;
sourceTree = "<group>";
};
DED7D7390A524295003AD0FB /* Lex */ = {
isa = PBXGroup;
children = (
DE3450D60AEB543100DBC861 /* DirectoryLookup.h */,
DE344AB70AE5DF6D00DBC861 /* HeaderSearch.h */,
DED7D73A0A524295003AD0FB /* IdentifierTable.h */,
DED7D73B0A524295003AD0FB /* Lexer.h */,
1A869A6E0BA2164C008DA07A /* LiteralSupport.h */,
DED7D73D0A524295003AD0FB /* MacroExpander.h */,
DED7D73E0A524295003AD0FB /* MacroInfo.h */,
DEAEE98A0A5A2B970045101B /* MultipleIncludeOpt.h */,
DE01DA480B12ADA300AC22CE /* PPCallbacks.h */,
DED7D73F0A524295003AD0FB /* Pragma.h */,
DED7D7400A524295003AD0FB /* Preprocessor.h */,
DED7D9170A52518C003AD0FB /* ScratchBuffer.h */,
DE6954630C5121BD00A5826B /* Token.h */,
);
name = Lex;
path = clang/Lex;
sourceTree = "<group>";
};
DED7D7500A5242C7003AD0FB /* Basic */ = {
isa = PBXGroup;
children = (
DED7D75D0A5242C7003AD0FB /* Diagnostic.cpp */,
DED7D75E0A5242C7003AD0FB /* FileManager.cpp */,
DED7D76D0A5242C7003AD0FB /* SourceManager.cpp */,
DED7D76E0A5242C7003AD0FB /* TokenKinds.cpp */,
DED626C80AE0C065001E80A4 /* TargetInfo.cpp */,
);
path = Basic;
sourceTree = "<group>";
};
DED7D78C0A5242E6003AD0FB /* Lex */ = {
isa = PBXGroup;
children = (
DE344B530AE5E46C00DBC861 /* HeaderSearch.cpp */,
DED7D79D0A5242E6003AD0FB /* IdentifierTable.cpp */,
DED7D79E0A5242E6003AD0FB /* Lexer.cpp */,
1A869AA70BA21ABA008DA07A /* LiteralSupport.cpp */,
DE3451570AEC176100DBC861 /* MacroExpander.cpp */,
DED7D7A00A5242E6003AD0FB /* MacroInfo.cpp */,
DED7D7A20A5242E6003AD0FB /* PPExpressions.cpp */,
DED7D7A30A5242E6003AD0FB /* Pragma.cpp */,
DED7D7A40A5242E6003AD0FB /* Preprocessor.cpp */,
DED7D9E40A5257F6003AD0FB /* ScratchBuffer.cpp */,
);
path = Lex;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXNativeTarget section */
8DD76F620486A84900D96B5E /* clang */ = {
isa = PBXNativeTarget;
buildConfigurationList = 1DEB923108733DC60010E9CD /* Build configuration list for PBXNativeTarget "clang" */;
buildPhases = (
8DD76F640486A84900D96B5E /* Sources */,
8DD76F660486A84900D96B5E /* Frameworks */,
8DD76F690486A84900D96B5E /* CopyFiles */,
);
buildRules = (
);
dependencies = (
);
name = clang;
productInstallPath = "$(HOME)/bin";
productName = clang;
productReference = 8DD76F6C0486A84900D96B5E /* clang */;
productType = "com.apple.product-type.tool";
};
/* End PBXNativeTarget section */
/* Begin PBXProject section */
08FB7793FE84155DC02AAC07 /* Project object */ = {
isa = PBXProject;
buildConfigurationList = 1DEB923508733DC60010E9CD /* Build configuration list for PBXProject "clang" */;
hasScannedForEncodings = 1;
mainGroup = 08FB7794FE84155DC02AAC07 /* clang */;
projectDirPath = "";
projectRoot = "";
targets = (
8DD76F620486A84900D96B5E /* clang */,
);
};
/* End PBXProject section */
/* Begin PBXSourcesBuildPhase section */
8DD76F640486A84900D96B5E /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
DED7D77A0A5242C7003AD0FB /* Diagnostic.cpp in Sources */,
DED7D77B0A5242C7003AD0FB /* FileManager.cpp in Sources */,
DED7D7890A5242C7003AD0FB /* SourceManager.cpp in Sources */,
DED7D78A0A5242C7003AD0FB /* TokenKinds.cpp in Sources */,
DED7D7C20A5242E6003AD0FB /* IdentifierTable.cpp in Sources */,
DED7D7C30A5242E6003AD0FB /* Lexer.cpp in Sources */,
DED7D7C50A5242E6003AD0FB /* MacroInfo.cpp in Sources */,
DED7D7C70A5242E6003AD0FB /* PPExpressions.cpp in Sources */,
DED7D7C80A5242E6003AD0FB /* Pragma.cpp in Sources */,
DED7D7C90A5242E6003AD0FB /* Preprocessor.cpp in Sources */,
DED7D9E50A5257F6003AD0FB /* ScratchBuffer.cpp in Sources */,
DE06D4310A8BB52D0050E87E /* Parser.cpp in Sources */,
DE0FCB340A9C21F100248FD5 /* Expr.cpp in Sources */,
DE5932D10AD60FF400BC794C /* clang.cpp in Sources */,
DE5932D30AD60FF400BC794C /* PrintParserCallbacks.cpp in Sources */,
DE5932D40AD60FF400BC794C /* PrintPreprocessedOutput.cpp in Sources */,
DED626C90AE0C065001E80A4 /* TargetInfo.cpp in Sources */,
DED627030AE0C51D001E80A4 /* Targets.cpp in Sources */,
DED62ABB0AE2EDF1001E80A4 /* Decl.cpp in Sources */,
DE344B540AE5E46C00DBC861 /* HeaderSearch.cpp in Sources */,
DE3451580AEC176100DBC861 /* MacroExpander.cpp in Sources */,
DE3452410AEF1A2D00DBC861 /* Stmt.cpp in Sources */,
DE3460000AFDCC1900DBC861 /* ParseObjc.cpp in Sources */,
DE3460050AFDCC6500DBC861 /* ParseInit.cpp in Sources */,
DE34600B0AFDCCBF00DBC861 /* ParseStmt.cpp in Sources */,
DE34600F0AFDCCCE00DBC861 /* ParseDecl.cpp in Sources */,
DE3460130AFDCCDA00DBC861 /* ParseExpr.cpp in Sources */,
DE3461270AFE68BE00DBC861 /* MinimalAction.cpp in Sources */,
DE34621D0AFEB19B00DBC861 /* StmtPrinter.cpp in Sources */,
DE75EDF10B06880E0020CF81 /* Type.cpp in Sources */,
DE1733000B068B700080B521 /* ASTContext.cpp in Sources */,
DE17336E0B068DC20080B521 /* DeclSpec.cpp in Sources */,
DED677C90B6C854100AAD4A3 /* Builtins.cpp in Sources */,
1A869AA80BA21ABA008DA07A /* LiteralSupport.cpp in Sources */,
DE67E70B0C020EC500F66BC5 /* SemaType.cpp in Sources */,
DE67E70D0C020ECA00F66BC5 /* SemaStmt.cpp in Sources */,
DE67E70F0C020ECF00F66BC5 /* SemaExprCXX.cpp in Sources */,
DE67E7110C020ED400F66BC5 /* SemaExpr.cpp in Sources */,
DE67E7130C020ED900F66BC5 /* SemaDecl.cpp in Sources */,
DE67E7170C020EE400F66BC5 /* Sema.cpp in Sources */,
DE67E71A0C020F4F00F66BC5 /* ASTStreamer.cpp in Sources */,
DE06756C0C051CFE00EBBFD8 /* ParseExprCXX.cpp in Sources */,
DE927FFD0C055DE900231DA4 /* LLVMCodegen.cpp in Sources */,
DE928B130C05659200231DA4 /* ModuleBuilder.cpp in Sources */,
DE928B7F0C0A615600231DA4 /* CodeGenModule.cpp in Sources */,
DE928B830C0A616000231DA4 /* CodeGenFunction.cpp in Sources */,
DE4772FA0C10EAE5002239E8 /* CGStmt.cpp in Sources */,
DE4772FC0C10EAEC002239E8 /* CGExpr.cpp in Sources */,
DE4264FC0C113592005A861D /* CGDecl.cpp in Sources */,
F0226FD20C18084500141F42 /* TextDiagnosticPrinter.cpp in Sources */,
84D9A8880C1A57E100AC7ABC /* AttributeList.cpp in Sources */,
DEB0AEBB0C2087AB00718A22 /* TextDiagnostics.cpp in Sources */,
DEEBC3BC0C2363BC00A9FE82 /* CodeGenTypes.cpp in Sources */,
DEC82DC40C32D50A00BAC245 /* DiagChecker.cpp in Sources */,
DEEBCBE50C33703100A9FE82 /* TextDiagnosticBuffer.cpp in Sources */,
DEF2E9340C5FBA02000C4259 /* ASTStreamers.cpp in Sources */,
DEF2EDA70C6A4252000C4259 /* StmtDumper.cpp in Sources */,
DEF2EFF30C6CDD74000C4259 /* CGExprAgg.cpp in Sources */,
DEF2F0100C6CFED5000C4259 /* SemaChecking.cpp in Sources */,
1ABC36940C7A4BDC006DB0AB /* CGBuiltin.cpp in Sources */,
DE224FF80C7AA98800D370A5 /* CGExprComplex.cpp in Sources */,
1A7342480C7B57D500122F56 /* CGObjC.cpp in Sources */,
DEC63B1A0C7B940200DBF169 /* CFG.cpp in Sources */,
DE2252700C7E82D000D370A5 /* CGExprScalar.cpp in Sources */,
35260CA50C7F75C000D66CE9 /* ExprCXX.cpp in Sources */,
DE2255FC0C8004E600D370A5 /* ParseDeclCXX.cpp in Sources */,
356EF9B50C8F7DDF006650F5 /* LiveVariables.cpp in Sources */,
355CF6840C90A8D400A08AA3 /* DeadStores.cpp in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXSourcesBuildPhase section */
/* Begin XCBuildConfiguration section */
1DEB923208733DC60010E9CD /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ARCHS = i386;
COPY_PHASE_STRIP = NO;
GCC_CW_ASM_SYNTAX = NO;
GCC_DYNAMIC_NO_PIC = NO;
GCC_ENABLE_CPP_EXCEPTIONS = NO;
GCC_ENABLE_CPP_RTTI = NO;
GCC_ENABLE_FIX_AND_CONTINUE = NO;
GCC_ENABLE_PASCAL_STRINGS = NO;
GCC_ENABLE_SYMBOL_SEPARATION = NO;
GCC_GENERATE_DEBUGGING_SYMBOLS = YES;
GCC_MODEL_TUNING = G5;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = "__STDC_LIMIT_MACROS=1";
GCC_STRICT_ALIASING = YES;
GCC_THREADSAFE_STATICS = NO;
GCC_USE_GCC3_PFE_SUPPORT = NO;
HEADER_SEARCH_PATHS = (
"~/llvm/tools/clang/include",
"~/llvm/include",
"$(HEADER_SEARCH_PATHS)",
);
INSTALL_PATH = "$(HOME)/bin";
LIBRARY_SEARCH_PATHS = "~/llvm/Debug/lib";
OTHER_LDFLAGS = (
"-lLLVMSupport",
"-lLLVMSystem",
);
PRECOMPS_INCLUDE_HEADERS_FROM_BUILT_PRODUCTS_DIR = NO;
PRODUCT_NAME = clang;
ZERO_LINK = NO;
};
name = Debug;
};
1DEB923308733DC60010E9CD /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ARCHS = i386;
GCC_CW_ASM_SYNTAX = NO;
GCC_ENABLE_CPP_EXCEPTIONS = NO;
GCC_ENABLE_CPP_RTTI = NO;
GCC_ENABLE_FIX_AND_CONTINUE = NO;
GCC_ENABLE_PASCAL_STRINGS = NO;
GCC_ENABLE_SYMBOL_SEPARATION = NO;
GCC_GENERATE_DEBUGGING_SYMBOLS = YES;
GCC_MODEL_TUNING = G5;
GCC_PREPROCESSOR_DEFINITIONS = "__STDC_LIMIT_MACROS=1";
GCC_STRICT_ALIASING = YES;
GCC_THREADSAFE_STATICS = NO;
GCC_USE_GCC3_PFE_SUPPORT = NO;
HEADER_SEARCH_PATHS = (
"~/llvm/tools/clang/include",
"~/llvm/include",
"$(HEADER_SEARCH_PATHS)",
);
INSTALL_PATH = "$(HOME)/bin";
LIBRARY_SEARCH_PATHS = "~/llvm/Debug/lib";
OTHER_LDFLAGS = (
"-lLLVMSupport",
"-lLLVMSystem",
);
PRECOMPS_INCLUDE_HEADERS_FROM_BUILT_PRODUCTS_DIR = NO;
PRODUCT_NAME = clang;
ZERO_LINK = NO;
};
name = Release;
};
1DEB923608733DC60010E9CD /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
GCC_WARN_ABOUT_RETURN_TYPE = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
PREBINDING = NO;
SDKROOT = /Developer/SDKs/MacOSX10.4u.sdk;
};
name = Debug;
};
1DEB923708733DC60010E9CD /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
GCC_WARN_ABOUT_RETURN_TYPE = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
PREBINDING = NO;
SDKROOT = /Developer/SDKs/MacOSX10.4u.sdk;
};
name = Release;
};
/* End XCBuildConfiguration section */
/* Begin XCConfigurationList section */
1DEB923108733DC60010E9CD /* Build configuration list for PBXNativeTarget "clang" */ = {
isa = XCConfigurationList;
buildConfigurations = (
1DEB923208733DC60010E9CD /* Debug */,
1DEB923308733DC60010E9CD /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
1DEB923508733DC60010E9CD /* Build configuration list for PBXProject "clang" */ = {
isa = XCConfigurationList;
buildConfigurations = (
1DEB923608733DC60010E9CD /* Debug */,
1DEB923708733DC60010E9CD /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
};
rootObject = 08FB7793FE84155DC02AAC07 /* Project object */;
}

Some files were not shown because too many files have changed in this diff Show More