Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
Summary:
When lldb is processing a location containing DW_OP_piece, the result is being
stored in the 'pieces' variable. The location is popped from the 'stack' variable.
So this check to see that 'stack' is not empty was invalid and caused the pieces
after the first to not get processed.
I am working on an architecture which has 16-bit and 8-bit registers. So this
problem was quite easy to see. But I was able to re-produce this issue on x86
too with long long variable and compiling woth -m32. It resulted in following
location list.
00000014 08048496 080484b5 (DW_OP_reg6 (esi); DW_OP_piece: 4; DW_OP_reg7 (edi); DW_OP_piece: 4)
and lldb was only showing the contents of first register when I evaluated the
variable as it does not process the 2nd piece due to this check.
Reviewers: clayborg, aprantl
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12674
llvm-svn: 247124
As part of our overall switch from hand-rolling RTTI to using LLVM-compatible
methods, I've done the same for ExpressionVariable. The main documentation for
how to do this is in TypeSystem.h, so I've simply referred to that.
llvm-svn: 247085
This will keep our code cleaner and it removes the need for intrusive additions to TypeSystem like:
class TypeSystem
{
virtual ClangASTContext *
AsClangASTContext() = 0;
}
As you can now just use the llvm::dyn_cast and other casts.
llvm-svn: 247041
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
* Use the frame's context (instead of just the target's) when evaluating,
so that the language of the frame's CU can be used to select the
compiler and/or compiler options to use when parsing the expression.
This allows for modules built with mixed languages to be parsed in
the context of their frame.
* Add all C and C++ language variants when determining the language options
to set.
* Enable C++ language options when language is C or ObjC as a workaround since
the expression parser uses features of C++ to capture values.
* Enable ObjC language options when language is C++ as a workaround for ObjC
requirements.
* Disable C++11 language options when language is C++03.
* Add test TestMixedLanguages.py to check that the language being used
for evaluation is that of the frame.
* Fix test TestExprOptions.py to check for C++11 instead of C++ since C++ has
to be enabled for C, and remove redundant expr --language test for ObjC.
* Fix TestPersistentPtrUpdate.py to not require C++11 in C.
Reviewed by: clayborg, spyffe, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11102
llvm-svn: 246829
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
This is still something I need to fix, but at least it's not so ugly, and it's
consistent with the other code that does that so we will catch it when we purge
all such code.
llvm-svn: 246738
Clang-specific part, create the ExpressionVariable source/header file and
move ClangExpressionVariable into the Clang expression parser plugin.
It is expected that there are some ugly #include paths... these will be resolved
by either (1) making that code use generic expression variables (once they're
separated appropriately) or (2) moving that code into a plug-in, often
the expression parser plug-in.
llvm-svn: 246737
These are 2 new value currently in experimental status used when split
debug info is enabled.
Differential revision: http://reviews.llvm.org/D12238
llvm-svn: 245931
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
The right thing to do here would be to give the ASTConsumer to the
CompilerInstance so it can set things up for us, but we can't do that
because we don't own it. So instead just initialize it ourselves.
llvm-svn: 245397
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679
For Hexagon we want to be able to call functions during debugging, however currently lldb only supports this when there is JIT support.
Although emulation using IR interpretation is an alternative, it is currently limited in that it can't make function calls.
In this patch we have extended the IR interpreter so that it can execute a function call on the target using register manipulation.
To do this we need to handle the Call IR instruction, passing arguments to a new thread plan and collecting any return values to pass back into the IR interpreter.
The new thread plan is needed to call an alternative ABI interface of "ABI::PerpareTrivialCall()", allowing more detailed information about arguments and return values.
Reviewers: jingham, spyffe
Subscribers: emaste, lldb-commits, ted, ADodds, deepak2427
Differential Revision: http://reviews.llvm.org/D9404
llvm-svn: 242137
We don't need to do the fancy dance with checking whether the iterator
represents a #define -- in fact, that's the wrong thing to do. The thing to do
is check whether the highest-priority module that did something to the module
#defined or #undefd it. If it #defined it, then the MacroInfo* will be non-NULL
and we're good to go.
llvm-svn: 241651
Recently lldb_private::Symbol was changed so the old code:
Address &Symbol::GetAddress();
Is now:
Address Symbol::GetAddress();
And the Address object that is returned will be invalid for non-address based symbols. When we have re-exported symbols this code would now fail:
const Address sym_address = sym_ctx.symbol->GetAddress();
if (!sym_address.IsValid())
continue;
symbol_load_addr = sym_ctx.symbol->ResolveCallableAddress(*target_sp);
if (symbol_load_addr == LLDB_INVALID_ADDRESS)
{
symbol_load_addr = sym_address.GetLoadAddress(target_sp.get());
}
It used to return an Address reference to the value of the re-exported symbol that contained no section and a zero value for Address.m_offset (since the original symbol in the symbol table had a value of zero). When a reference was returned, this meant the "sym_address.IsValid()" would return true because the Address.m_offset was not LLDB_INVALID_ADDRESS, it was zero. This was working by mistake.
The Symbol::ResolveCallableAddress(...) actually checks for reexported symbols and whole bunch of other cases and resolves the address correctly, so we should let it do its thing and not cut it off before it can resolve the address with the "if (!sym_address.IsValid()) continue;".
llvm-svn: 241282
The new names clarify that the members have to do with the execution
context and not the language. For example, m_cplusplus was renamed to
m_in_cplusplus_method.
llvm-svn: 241132
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
it an extern "C" function instead of a C++ function
so that Clang doesn't emit a mangled function reference.
Also removed the hack in ClangExpressionDeclMap that
works around this.
llvm-svn: 238476
expr_options = lldb.SBExpressionOptions()
expr_options.SetPrefix('''
struct Foo {
int a;
int b;
int c;
}
'''
expr_result = frame.EvaluateExpression ("Foo foo = { 1, 2, 3}; foo", expr_options)
This fixed a current issue with ptr_refs, cstr_refs and malloc_info so that they can work. If expressions define their own types and then return expression results that use those types, those types get copied into the target's AST context so they persist and the expression results can be still printed and used in future expressions. Code was added to the expression parser to copy the context in which types are defined if they are used as the expression results. So in the case of types defined by expressions, they get defined in a lldb_expr function and that function and _all_ of its statements get copied. Many types of statements are not supported in this copy (array subscript, lambdas, etc) so this causes expressions to fail as they can't copy the result types. To work around this issue I have added code that allows expressions to specify an expression specific prefix. Then when you evaluate the expression you can pass the "expr_options" and have types that can be correctly copied out into the target. I added this as a way to work around an issue, but I also think it is nice to be allowed to specify an expression prefix that can be reused by many expressions, so this feature is very useful.
<rdar://problem/21130675>
llvm-svn: 238365
Removed some unused variables, added some consts, changed some casts
to const_cast. I don't think any of these changes are very
controversial.
Differential Revision: http://reviews.llvm.org/D9674
llvm-svn: 237218
(including inline functions) from modules in the
expression parser. We now have to retain a reference
to the code generator in ClangExpressionDeclMap so
that any imported function bodies can be appropriately
sent to that code generator.
<rdar://problem/19883002>
llvm-svn: 236297
global convenience expression prefix. Also ensured
that if macros are defined by the modules we don't
try to redefine them. Finally cleaned up a bit of
code while I was in there.
<rdar://problem/20756642>
llvm-svn: 236266
module-loading support for the expression parser.
- It adds support for auto-loading modules referred
to by a compile unit. These references are
currently in the form of empty translation units.
This functionality is gated by the setting
target.auto-import-clang-modules (boolean) = false
- It improves and corrects support for loading
macros from modules, currently by textually
pasting all #defines into the user's expression.
The improvements center around including only those
modules that are relevant to the current context -
hand-loaded modules and the modules that are imported
from the current compile unit.
- It adds an "opt-in" mechanism for all of this
functionality. Modules have to be explicitly
imported (via @import) or auto-loaded (by enabling
the above setting) to enable any of this
functionality.
It also adds support to the compile unit and symbol
file code to deal with empty translation units that
indicate module imports, and plumbs this through to
the CompileUnit interface.
Finally, it makes the following changes to the test
suite:
- It adds a testcase that verifies that modules are
automatically loaded when the appropriate setting
is enabled (lang/objc/modules-auto-import); and
- It modifies lanb/objc/modules-incomplete to test
the case where a module #undefs something that is
#defined in another module.
<rdar://problem/20299554>
llvm-svn: 235313