C is short for Chunk, but we are no longer using that term.
RI is probably short for relocation iterator, but this is not an interator.
llvm-svn: 298786
Previously, relocation offsets are recalculated for .eh_frame sections
inside the main loop, and that messed up the main loop. This patch
separates that logic into a dedicated class.
llvm-svn: 298785
The original code is a big `if` and `else` which ends with `continue`
like this:
if (cond) {
...
// fall through
} else {
...
continue;
}
This patch rewrites it with the following.
if (!cond) {
...
continue;
}
...
llvm-svn: 298672
I honestly do not understand this part of code as it is too tangled.
What I'm trying now is to carefully disentangle it by transforming
code without changing meaining to see if I can improve overall
readability.
llvm-svn: 298576
The patch introduces two new relocations expressions R_MIPS_GOT_GP and
R_MIPS_GOT_GP_PC. The first one represents a current value of `_gp`
pointer and used to calculate relocations against the `__gnu_local_gp`
symbol. The second one represents the offset between the beginning of
the function and the `_gp` pointer's value.
There are two motivations for introducing new expressions:
- It's better to keep all non-trivial relocation calculations in the
single place - `getRelocTargetVA` function.
- Relocations against both `_gp_disp` and `__gnu_local_gp` symbols
depend on the `_gp` value. It's a magical value points to the "middle"
of GOT. Now all relocations use a common `_gp` value. But in fact,
under some conditions each input file might require its own `_gp`
value. I'm going to implement it in the future patches. So it's
better to make `MipsGotSection` responsible for calculation of
the `_gp` value.
llvm-svn: 298306
We had a few Config member functions that returns configuration values.
For example, we had is64() which returns true if the target is 64-bit.
The return values of these functions are constant and never change.
This patch is to compute them only once to make it clear that they'll
never change.
llvm-svn: 298168
Summary:
When we perform LTO builds with a version of ar that does not
understand LLVM bitcode objects, we end up with undefined references,
because our archive files do not list the bitcode symbols in their
indices. The error messages do not make it clear what the real problem
is. This change adds a note that points out the likely problem and
solution. It is similar in spirit to r282633, but aims to avoid false
positives by only triggering when we see both undefined references and
archives without symbols in their indices.
Fixes PR32281.
Reviewers: davide, ruiu, tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31011
llvm-svn: 298124
Was fixed, details on review page.
Original commit message:
That removes CopyRelSection class completely, making
Bss/BssRelRo to be just regular synthetics.
This is splitted from D30541 and polished.
Difference from D30541 that all logic of SharedSymbol
converting to DefinedRegular was removed for now and
probably will be posted as separate patch.
Differential revision: https://reviews.llvm.org/D30892
llvm-svn: 298062
That removes CopyRelSection class completely, making
Bss/BssRelRo to be just regular synthetics.
This is splitted from D30541 and polished.
Difference from D30541 that all logic of SharedSymbol
converting to DefinedRegular was removed for now and
probably will be posted as separate patch.
Differential revision: https://reviews.llvm.org/D30892
llvm-svn: 297814
Being passed -z notext is a pretty strong indication that the user is
OK with text relocations. This is not the same behavior as bfd, but
bfd defaults to -z notext, so it has to try to avoid text relocations
and use them as a last resort.
llvm-svn: 297789
gold linker manual describes them as:
-z text Do not permit relocations in read-only segments
-z notext Permit relocations in read-only segments (default)
In LLD default is to not permit them. Patch implements -z notext.
Differential revision: https://reviews.llvm.org/D30530
llvm-svn: 297366
This change moves the calls to finalizeContent() for each synthetic section
before createThunks(). This will allow us to assign addresses prior to
calling createThunks(). As addition of thunks may add to the static
symbol table and may affect the size of the mips got section we introduce a
couple of additional member functions to update these values.
Differential revision: https://reviews.llvm.org/D29983
llvm-svn: 297277
This change fixes a bug in which the Mips LA25 Thunks are always assigned
to the same Output section as the caller and not the callee as expected.
Differential Revision: https://reviews.llvm.org/D30637
llvm-svn: 297135
In compare with D30458, this makes Bss/BssRelRo to be pure
synthetic sections.
That removes CopyRelSection class completely, making
Bss/BssRelRo to be just regular synthetics.
SharedSymbols involved in creating copy relocations are
converted to DefinedRegular, what also simplifies things.
Differential revision: https://reviews.llvm.org/D30541
llvm-svn: 297008
In many places we reset Size to 0 before calling assignOffsets()
manually. Sometimes we don't do that.
It looks we can just always do that inside.
Previous code had:
template <class ELFT> void OutputSection::assignOffsets() {
uint64_t Off = Size;
And tests feels fine with Off = 0.
I think Off = Size make no sence.
Differential revision: https://reviews.llvm.org/D30463
llvm-svn: 296609
With the current design an InputSection is basically anything that
goes directly in a OutputSection. That includes plain input section
but also synthetic sections, so this should probably not be a
template.
llvm-svn: 295993
We shouldn't report an error for R_*_NONE relocs since we're emitting
them when writing relocations to discarded sections.
Differential Revision: https://reviews.llvm.org/D30279
llvm-svn: 295936
This patch removes NeedsCopyOrPltAddr and instead add two variables,
NeedsCopy and NeedsPltAddr. This uses one more bit in Symbol class,
but the actual size doesn't increase because we had unused bits.
This should improve code readability.
llvm-svn: 295287
This is slightly inefficient than the previous code, but that is really
negligible as this function is usually called at most only a few times.
llvm-svn: 295282