All these unit tests already include ${COMPILER_RT_GTEST_SOURCE} as an
input source file and the target llvm_gtest does not exist for
standalone builds. Currently the DEPS argument is ignored for standalone
builds so the missing target is not a problem, but as part of fixing a
build race for standalone builds I am planning to include those
dependencies in COMPILER_RT_TEST_STANDALONE_BUILD_LIBS configurations.
Reviewed By: vitalybuka
Pull Request: https://github.com/llvm/llvm-project/pull/83649
1. Differentiate SANITIZER_WINDOWS64 for x64 and arm64
2. turn off interception tests that expect x86 assembly
---------
Co-authored-by: Farzon Lotfi <farzon@farzon.com>
The comments date back to NDK r10, which is ancient. libatomic isn't
always needed anymore, and even when it is, it's bundled into
compiler-rt in the NDK so we'll get it automatically. Remove the
unnecessary explicit links.
Reviewed By: srhines
Differential Revision: https://reviews.llvm.org/D158793
Rework Linux (and *BSD) interceptors to allow for up to 3 (2 for *BSD)
simultaneous interceptors. See code comments for details.
The main motivation is to support new sampling sanitizers (in the spirit
of GWP-ASan), that have to intercept few functions. Unfortunately, the
reality is that there are user interceptors that exist in the wild.
To support foreign user interceptors, foreign dynamic analysis
interceptors, and compiler-rt interceptors all at the same time,
including any combination of them, this change enables up to 3
interceptors on Linux (2 on *BSD).
v2:
* Revert to to the simpler "weak wrapper -(alias)-> __interceptor"
scheme on architectures that cannot implement a trampoline efficiently
due to complexities of resolving a preemptible symbol (PowerPC64
ELFv2 global entry, and i386 PIC).
* Avoid duplicate intercepted functions in gen_dynamic_list.py, due to
matching __interceptor_X and ___interceptor_X.
* Fix s390 __tls_get_offset.
Reviewed By: dvyukov, MaskRay, vitalybuka
Differential Revision: https://reviews.llvm.org/D151085
Rework Linux (and *BSD) interceptors to allow for up to 3 (2 for *BSD)
simultaneous interceptors. See code comments for details.
The main motivation is to support new sampling sanitizers (in the spirit
of GWP-ASan), that have to intercept few functions. Unfortunately, the
reality is that there are user interceptors that exist in the wild.
To support foreign user interceptors, foreign dynamic analysis
interceptors, and compiler-rt interceptors all at the same time,
including any combination of them, this change enables up to 3
interceptors on Linux (2 on *BSD).
Reviewed By: dvyukov, MaskRay, vitalybuka
Differential Revision: https://reviews.llvm.org/D151085
D135716 introduced -ftrivial-auto-var-init=pattern where supported.
Unfortunately this introduces unwanted memset() for large stack arrays,
as shown by the new tests added for asan and msan (tsan already had this
test).
In general, the problem of compiler-inserted memintrinsic calls
(memset/memcpy/memmove) is not new to compiler-rt, and has been a
problem before.
To avoid introducing unwanted memintrinsic calls, we redefine
memintrinsics as __sanitizer_internal_mem* at the assembly level for
most source files automatically (where sanitizer_common_internal_defs.h
is included).
In few cases, redefining a symbol in this way causes issues for
interceptors, namely the memintrinsic interceptor themselves. For such
source files we have to selectively disable the redefinition.
Other alternatives have been considered, but simply do not work well in
the context of compiler-rt:
1. Linker --wrap: this does not work because --wrap only
applies to the final link, and would not apply when building
sanitizer static libraries.
2. Changing references to memset() via objcopy: this may work,
but due to the complexities of the build system, introducing
such a post-processing step for the right object files (in
particular object files defining memset cannot be touched)
seems infeasible.
The chosen solution works well (as shown by the tests). Other libraries
have chosen the same solution where nothing else works (see e.g. glibc's
"symbol-hacks.h").
v4:
- Add interface attribute to __sanitizer_internal_mem* declarations as
well, as otherwise some compilers (MSVC) will complain.
- Add SANITIZER_COMMON_NO_REDEFINE_BUILTINS to source files using
C++STL, since this could lead to ODR violations (see added comment).
v3:
- Don't use ALIAS() to alias internal_mem*() functions to
__sanitizer_internal_mem*() functions, but just define them as
ALWAYS_INLINE functions instead. This will work on darwin and windows.
v2:
- Fix ubsan_minimal build where compiler decides to insert
memset/memcpy: ubsan_minimal has work without RTSanitizerCommonLibc,
therefore do not redefine the builtins.
- Fix definition of internal_mem* functions with compilers that want the
aliased function to already be defined before.
- Fix definition of __sanitizer_internal_mem* functions with compilers
more pedantic about attribute placement around extern "C".
Reviewed By: vitalybuka, dvyukov
Differential Revision: https://reviews.llvm.org/D151152
D135716 introduced -ftrivial-auto-var-init=pattern where supported.
Unfortunately this introduces unwanted memset() for large stack arrays,
as shown by the new tests added for asan and msan (tsan already had this
test).
In general, the problem of compiler-inserted memintrinsic calls
(memset/memcpy/memmove) is not new to compiler-rt, and has been a
problem before.
To avoid introducing unwanted memintrinsic calls, we redefine
memintrinsics as __sanitizer_internal_mem* at the assembly level for
most source files automatically (where sanitizer_common_internal_defs.h
is included).
In few cases, redefining a symbol in this way causes issues for
interceptors, namely the memintrinsic interceptor themselves. For such
source files we have to selectively disable the redefinition.
Other alternatives have been considered, but simply do not work well in
the context of compiler-rt:
1. Linker --wrap: this does not work because --wrap only
applies to the final link, and would not apply when building
sanitizer static libraries.
2. Changing references to memset() via objcopy: this may work,
but due to the complexities of the build system, introducing
such a post-processing step for the right object files (in
particular object files defining memset cannot be touched)
seems infeasible.
The chosen solution works well (as shown by the tests). Other libraries
have chosen the same solution where nothing else works (see e.g. glibc's
"symbol-hacks.h").
v3:
- Don't use ALIAS() to alias internal_mem*() functions to
__sanitizer_internal_mem*() functions, but just define them as
ALWAYS_INLINE functions instead. This will work on darwin and windows.
v2:
- Fix ubsan_minimal build where compiler decides to insert
memset/memcpy: ubsan_minimal has work without RTSanitizerCommonLibc,
therefore do not redefine the builtins.
- Fix definition of internal_mem* functions with compilers that want the
aliased function to already be defined before.
- Fix definition of __sanitizer_internal_mem* functions with compilers
more pedantic about attribute placement around extern "C".
Reviewed By: vitalybuka, dvyukov
Differential Revision: https://reviews.llvm.org/D151152
D135716 introduced -ftrivial-auto-var-init=pattern where supported.
Unfortunately this introduces unwanted memset() for large stack arrays,
as shown by the new tests added for asan and msan (tsan already had this
test).
In general, the problem of compiler-inserted memintrinsic calls
(memset/memcpy/memmove) is not new to compiler-rt, and has been a
problem before.
To avoid introducing unwanted memintrinsic calls, we redefine
memintrinsics as __sanitizer_internal_mem* at the assembly level for
most source files automatically (where sanitizer_common_internal_defs.h
is included).
In few cases, redefining a symbol in this way causes issues for
interceptors, namely the memintrinsic interceptor themselves. For such
source files we have to selectively disable the redefinition.
Other alternatives have been considered, but simply do not work well in
the context of compiler-rt:
1. Linker --wrap: this does not work because --wrap only
applies to the final link, and would not apply when building
sanitizer static libraries.
2. Changing references to memset() via objcopy: this may work,
but due to the complexities of the build system, introducing
such a post-processing step for the right object files (in
particular object files defining memset cannot be touched)
seems infeasible.
The chosen solution works well (as shown by the tests). Other libraries
have chosen the same solution where nothing else works (see e.g. glibc's
"symbol-hacks.h").
v2:
- Fix ubsan_minimal build where compiler decides to insert
memset/memcpy: ubsan_minimal has work without RTSanitizerCommonLibc,
therefore do not redefine the builtins.
- Fix definition of internal_mem* functions with compilers that want the
aliased function to already be defined before.
- Fix definition of __sanitizer_internal_mem* functions with compilers
more pedantic about attribute placement around extern "C".
Reviewed By: vitalybuka, dvyukov
Differential Revision: https://reviews.llvm.org/D151152
D135716 introduced -ftrivial-auto-var-init=pattern where supported.
Unfortunately this introduces unwanted memset() for large stack arrays,
as shown by the new tests added for asan and msan (tsan already had this
test).
In general, the problem of compiler-inserted memintrinsic calls
(memset/memcpy/memmove) is not new to compiler-rt, and has been a
problem before.
To avoid introducing unwanted memintrinsic calls, we redefine
memintrinsics as __sanitizer_internal_mem* at the assembly level for
most source files automatically (where sanitizer_common_internal_defs.h
is included).
In few cases, redefining a symbol in this way causes issues for
interceptors, namely the memintrinsic interceptor themselves. For such
source files we have to selectively disable the redefinition.
Other alternatives have been considered, but simply do not work well in
the context of compiler-rt:
1. Linker --wrap: this does not work because --wrap only
applies to the final link, and would not apply when building
sanitizer static libraries.
2. Changing references to memset() via objcopy: this may work,
but due to the complexities of the build system, introducing
such a post-processing step for the right object files (in
particular object files defining memset cannot be touched)
seems infeasible.
The chosen solution works well (as shown by the tests). Other libraries
have chosen the same solution where nothing else works (see e.g. glibc's
"symbol-hacks.h").
Reviewed By: vitalybuka, dvyukov
Differential Revision: https://reviews.llvm.org/D151152
Add a callback from interception to allow asan on Windows to produce
better error messages. If an unrecoverable error occured when
intercepting functions, print a message before terminating.
Additionally, when encountering unknown instructions, a more helpful
message containing the address and the bytes of the unknown instruction
is now printed to help identify the issue and make it easier to propose
a fix.
Depends on D149549
Differential Revision: https://reviews.llvm.org/D149002
Do not treat unknown instructions as a fatal error. In most cases,
failure to intercept a function is reported by the caller, though
requires setting verbosity to 1 or higher to be visible.
Better error message reporting for asan will be added in a separate
patch.
Differential Revision: https://reviews.llvm.org/D149549
These assembly patterns are needed to intercept some libc++ and
libunwind functions built by Clang for i686-w64-windows-gnu target.
Differential Revision: https://reviews.llvm.org/D148990
The interception tests rely on the test binary being large address
aware. This has already been set for MSVC builds. Now we do the same for
MinGW.
This fixes the interception unit tests for i686-w64-windows-gnu target.
Differential Revision: https://reviews.llvm.org/D148996
When trying to debug some `compiler-rt` unittests, I initially had a hard
time because
- even in a `Debug` build one needs to set `COMPILER_RT_DEBUG` to get
debugging info for some of the code and
- even so the unittests used a hardcoded `-O2` which often makes debugging
impossible.
This patch addresses this by instead using `-O0` if `COMPILER_RT_DEBUG`.
Changes relative to the previous commit:
- Use `string(APPEND)` for `COMPILER_RT_TEST_COMPILER_CFLAGS`.
- Omit `-O3` from `COMPILER_RT_TEST_COMPILER_CFLAGS` in non-debug builds for now.
- Provide `__sanitizer::integral_constant<bool, true>::value` instantiation
for `sanitizer_type_traits_test.cpp` in debug builds.
- Disable subtests of `tsan/tests/unit/tsan_trace_test.cpp` that deadlock
in debug builds.
- `XFAIL` `tsan/Linux/check_memcpy.c` in debug builds.
Tested on `sparcv9-sun-solaris2.11`, `amd64-pc-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D91620
When trying to debug some `compiler-rt` unittests, I initially had a hard
time because
- even in a `Debug` build one needs to set `COMPILER_RT_DEBUG` to get
debugging info for some of the code and
- even so the unittests used a hardcoded `-O2` which often makes debugging
impossible.
This patch addresses this by instead using `-O0` if `COMPILER_RT_DEBUG`.
Two tests in `sanitizer_type_traits_test.cpp` need to be disabled since
they have undefined references to `__sanitizer::integral_constant<bool,
true>::value`.
Tested on `sparcv9-sun-solaris2.11`, `amd64-pc-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D91620
We already link libunwind explicitly so avoid trying to link toolchain's
default libunwind which may be missing. This matches what we already do
for libcxx and libcxxabi.
Differential Revision: https://reviews.llvm.org/D129472
This is a follow up to D118200 which applies a similar cleanup to
headers when using in-tree libc++ to avoid accidentally picking up
the system headers.
Differential Revision: https://reviews.llvm.org/D128035
The upstream project ships CMake rules for building vanilla gtest/gmock which conflict with the names chosen by LLVM. Since LLVM's build rules here are quite specific to LLVM, prefixing them to avoid collision is the right thing (i.e. there does not appear to be a path to letting someone *replace* LLVM's googletest with one they bring, so co-existence should be the goal).
This allows LLVM to be included with testing enabled within projects that themselves have a dependency on an official gtest release.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D120789
To intercept the functions in Win11's ntdll.dll, we need to use the trampoline
technique because there are bytes other than 0x90 or 0xcc in the gaps between
exported functions. This patch adds more patterns that appear in ntdll's
functions.
Bug: https://bugs.llvm.org/show_bug.cgi?id=51721
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D109941
On Linux both version of the INTERCEPT_FUNCTION macro now return true
when interception was successful. Adapt and cleanup some usages.
Also note that `&(func) == &WRAP(func)` is a link-time property, but we
do a runtime check.
Tested on Linux and macOS.
Previous attempt reverted by: 5642c3feb0
This attempt to bring order to the interceptor macro goes the other
direction and aligns the Linux implementation with the way things are
done on Windows.
Reviewed By: vitalybuka, rnk
Differential Revision: https://reviews.llvm.org/D61358
llvm-svn: 359725
Changing INTERCEPT_FUNCTION to return void is not functionally correct.
IMO the best way to communicate failure or success of interception is
with a return value, not some external address comparison.
This change was also creating link errors for _except_handler4_common,
which is exported from ucrtbase.dll in 32-bit Windows.
Also revert dependent changes r359362 and r359466.
llvm-svn: 359611
I broke the build, panicked and applied the wrong fix in my previous
commit. The ASSERT was obsolete, but not the call INTERCEPT_FUNCTION.
llvm-svn: 359336
Current interception code does not cover all of the required registers
on Windows for a specific flavor of MOV, so this patch adds cases to
identify the following 5-byte instructions on 64-bit Windows:
mov QWORD PTR [rsp + XX], rdx <- second integer argument
mov QWORD PTR [rsp + XX], r9 <- third integer argument
mov QWORD PTR [rsp + XX], r8 <- fourth integer argument
The instruction for MOV [...] RCX is already covered in the previous
version.
Patch by Matthew McGovern!
Reviewers: rnk
Differential Revision: https://reviews.llvm.org/D57339
llvm-svn: 353483
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Fix the gtest dependency to be included in DEPS only, rather than
in COMPILE_DEPS + DEPS. The former variable is apparently used to
provide unconditional dependencies, while the latter are only used
for non-standalone builds. Since they are concatenated, specifying gtest
in both is redundant. Furthermore, including it in COMPILE_DEPS causes
build failure for standalone builds where 'gtest' target is not present.
Differential Revision: https://reviews.llvm.org/D38839
llvm-svn: 315605
into a function.
Most CMake configuration under compiler-rt/lib/*/tests have
almost-the-same-but-not-quite functions of the form add_X_[unit]tests
for compiling and running the tests.
Much of the logic is duplicated with minor variations across different
sub-folders.
This can harm productivity for multiple reasons:
For newcomers, resulting CMake files are very large, hard to understand,
and hide the intention of the code.
Changes for enabling certain architectures end up being unnecessarily
large, as they get duplicated across multiple folders.
Adding new sub-projects requires more effort than it should, as a
developer has to again copy-n-paste the configuration, and it's not even
clear from which sub-project it should be copy-n-pasted.
With this change the logic of compile-and-generate-a-set-of-tests is
extracted into a function, which hopefully makes writing and reading
CMake much easier.
Differential Revision: https://reviews.llvm.org/D36116
llvm-svn: 310971
This patch addresses two issues:
Most of the time, hacks with `if/else` in order to get support for
multi-configuration builds are superfluous.
The variable `CMAKE_CFG_INTDIR` was created precisely for this purpose: it
expands to `.` on all single-configuration builds, and to a configuration
name otherwise.
The `if/else` hacks for the library name generation should also not be
done, as CMake has `TARGET_FILE` generator expression precisely for this
purpose, as it expands to the exact filename of the resulting target.
Differential Revision: https://reviews.llvm.org/D35952
llvm-svn: 309341
This patch addresses two issues:
Most of the time, hacks with `if/else` in order to get support for
multi-configuration builds are superfluous.
The variable `CMAKE_CFG_INTDIR` was created precisely for this purpose: it
expands to `.` on all single-configuration builds, and to a configuration
name otherwise.
The `if/else` hacks for the library name generation should also not be
done, as CMake has `TARGET_FILE` generator expression precisely for this
purpose, as it expands to the exact filename of the resulting target.
Differential Revision: https://reviews.llvm.org/D35952
llvm-svn: 309306
The first instruction of the new ucrtbase!strnlen implementation loads a
global, presumably to dispatch between SSE and non-SSE optimized strnlen
implementations.
Fixes PR32895 and probably
https://github.com/google/sanitizers/issues/818
llvm-svn: 305581
This fix a bug, when calling InternalGetProcAddress() for an executable that
doesn't export any symbol. So the table is empty.
If we don't check for this condition, the program fails with Error 0xc0000142.
Also, I add a regression test for Windows.
Differential Revision: https://reviews.llvm.org/D28502
llvm-svn: 293521
Summary:
In a 32-bit address space, PC-relative jump targets are wrapped, so a
direct branch at 0x90000001 can reach address 0x10000000 with a
displacement of 0x7FFFFFFFF. This can happen in applications, such as
Chrome, that are linked with /LARGEADDRESSAWARE.
Reviewers: etienneb
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D26650
llvm-svn: 286997