Refactor Assume logic into a separate class ConstraintManager.
llvm-svn: 55412
This commit is contained in:
298
clang/lib/Analysis/BasicConstraintManager.cpp
Normal file
298
clang/lib/Analysis/BasicConstraintManager.cpp
Normal file
@@ -0,0 +1,298 @@
|
||||
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
|
||||
#include "clang/Analysis/PathSensitive/GRState.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
|
||||
using namespace clang;
|
||||
|
||||
namespace {
|
||||
|
||||
// BasicConstraintManager only tracks equality and inequality constraints of
|
||||
// constants and integer variables.
|
||||
class VISIBILITY_HIDDEN BasicConstraintManager : public ConstraintManager {
|
||||
typedef llvm::ImmutableMap<SymbolID, GRState::IntSetTy> ConstNotEqTy;
|
||||
typedef llvm::ImmutableMap<SymbolID, const llvm::APSInt*> ConstEqTy;
|
||||
|
||||
GRStateManager& StateMgr;
|
||||
|
||||
public:
|
||||
BasicConstraintManager(GRStateManager& statemgr) : StateMgr(statemgr) {}
|
||||
|
||||
virtual const GRState* Assume(const GRState* St, RVal Cond,
|
||||
bool Assumption, bool& isFeasible);
|
||||
|
||||
const GRState* Assume(const GRState* St, LVal Cond, bool Assumption,
|
||||
bool& isFeasible);
|
||||
|
||||
const GRState* AssumeAux(const GRState* St, LVal Cond,bool Assumption,
|
||||
bool& isFeasible);
|
||||
|
||||
const GRState* Assume(const GRState* St, NonLVal Cond, bool Assumption,
|
||||
bool& isFeasible);
|
||||
|
||||
const GRState* AssumeAux(const GRState* St, NonLVal Cond, bool Assumption,
|
||||
bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
|
||||
const SymIntConstraint& C, bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymNE(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymEQ(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymLT(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymGT(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymGE(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible);
|
||||
|
||||
const GRState* AssumeSymLE(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible);
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
ConstraintManager* clang::CreateBasicConstraintManager(GRStateManager& StateMgr)
|
||||
{
|
||||
return new BasicConstraintManager(StateMgr);
|
||||
}
|
||||
|
||||
const GRState* BasicConstraintManager::Assume(const GRState* St, RVal Cond,
|
||||
bool Assumption, bool& isFeasible) {
|
||||
if (Cond.isUnknown()) {
|
||||
isFeasible = true;
|
||||
return St;
|
||||
}
|
||||
|
||||
if (isa<NonLVal>(Cond))
|
||||
return Assume(St, cast<NonLVal>(Cond), Assumption, isFeasible);
|
||||
else
|
||||
return Assume(St, cast<LVal>(Cond), Assumption, isFeasible);
|
||||
}
|
||||
|
||||
const GRState* BasicConstraintManager::Assume(const GRState* St, LVal Cond,
|
||||
bool Assumption, bool& isFeasible) {
|
||||
St = AssumeAux(St, Cond, Assumption, isFeasible);
|
||||
// TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
|
||||
return St;
|
||||
}
|
||||
|
||||
const GRState* BasicConstraintManager::AssumeAux(const GRState* St, LVal Cond,
|
||||
bool Assumption, bool& isFeasible) {
|
||||
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
|
||||
|
||||
switch (Cond.getSubKind()) {
|
||||
default:
|
||||
assert (false && "'Assume' not implemented for this LVal.");
|
||||
return St;
|
||||
|
||||
case lval::SymbolValKind:
|
||||
if (Assumption)
|
||||
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
|
||||
BasicVals.getZeroWithPtrWidth(), isFeasible);
|
||||
else
|
||||
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
|
||||
BasicVals.getZeroWithPtrWidth(), isFeasible);
|
||||
|
||||
case lval::DeclValKind:
|
||||
case lval::FuncValKind:
|
||||
case lval::GotoLabelKind:
|
||||
case lval::StringLiteralValKind:
|
||||
isFeasible = Assumption;
|
||||
return St;
|
||||
|
||||
case lval::FieldOffsetKind:
|
||||
return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
|
||||
Assumption, isFeasible);
|
||||
|
||||
case lval::ArrayOffsetKind:
|
||||
return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
|
||||
Assumption, isFeasible);
|
||||
|
||||
case lval::ConcreteIntKind: {
|
||||
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
|
||||
isFeasible = b ? Assumption : !Assumption;
|
||||
return St;
|
||||
}
|
||||
} // end switch
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::Assume(const GRState* St, NonLVal Cond, bool Assumption,
|
||||
bool& isFeasible) {
|
||||
St = AssumeAux(St, Cond, Assumption, isFeasible);
|
||||
// TF->EvalAssume() does nothing now.
|
||||
return St;
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeAux(const GRState* St,NonLVal Cond,
|
||||
bool Assumption, bool& isFeasible) {
|
||||
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
|
||||
SymbolManager& SymMgr = StateMgr.getSymbolManager();
|
||||
|
||||
switch (Cond.getSubKind()) {
|
||||
default:
|
||||
assert(false && "'Assume' not implemented for this NonLVal");
|
||||
|
||||
case nonlval::SymbolValKind: {
|
||||
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
|
||||
SymbolID sym = SV.getSymbol();
|
||||
|
||||
if (Assumption)
|
||||
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
|
||||
isFeasible);
|
||||
else
|
||||
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
|
||||
isFeasible);
|
||||
}
|
||||
|
||||
case nonlval::SymIntConstraintValKind:
|
||||
return
|
||||
AssumeSymInt(St, Assumption,
|
||||
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
|
||||
isFeasible);
|
||||
|
||||
case nonlval::ConcreteIntKind: {
|
||||
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
|
||||
isFeasible = b ? Assumption : !Assumption;
|
||||
return St;
|
||||
}
|
||||
|
||||
case nonlval::LValAsIntegerKind:
|
||||
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
|
||||
Assumption, isFeasible);
|
||||
} // end switch
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
|
||||
const SymIntConstraint& C, bool& isFeasible) {
|
||||
|
||||
switch (C.getOpcode()) {
|
||||
default:
|
||||
// No logic yet for other operators.
|
||||
isFeasible = true;
|
||||
return St;
|
||||
|
||||
case BinaryOperator::EQ:
|
||||
if (Assumption)
|
||||
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
else
|
||||
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
|
||||
case BinaryOperator::NE:
|
||||
if (Assumption)
|
||||
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
else
|
||||
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
|
||||
case BinaryOperator::GE:
|
||||
if (Assumption)
|
||||
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
else
|
||||
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
|
||||
case BinaryOperator::LE:
|
||||
if (Assumption)
|
||||
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
else
|
||||
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
|
||||
} // end switch
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymNE(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible) {
|
||||
// First, determine if sym == X, where X != V.
|
||||
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
||||
isFeasible = (*X != V);
|
||||
return St;
|
||||
}
|
||||
|
||||
// Second, determine if sym != V.
|
||||
if (St->isNotEqual(sym, V)) {
|
||||
isFeasible = true;
|
||||
return St;
|
||||
}
|
||||
|
||||
// If we reach here, sym is not a constant and we don't know if it is != V.
|
||||
// Make that assumption.
|
||||
isFeasible = true;
|
||||
return StateMgr.AddNE(St, sym, V);
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymEQ(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible) {
|
||||
// First, determine if sym == X, where X != V.
|
||||
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
||||
isFeasible = *X == V;
|
||||
return St;
|
||||
}
|
||||
|
||||
// Second, determine if sym != V.
|
||||
if (St->isNotEqual(sym, V)) {
|
||||
isFeasible = false;
|
||||
return St;
|
||||
}
|
||||
|
||||
// If we reach here, sym is not a constant and we don't know if it is == V.
|
||||
// Make that assumption.
|
||||
|
||||
isFeasible = true;
|
||||
return StateMgr.AddEQ(St, sym, V);
|
||||
}
|
||||
|
||||
// These logic will be handled in another ConstraintManager.
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymLT(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible) {
|
||||
|
||||
// FIXME: For now have assuming x < y be the same as assuming sym != V;
|
||||
return AssumeSymNE(St, sym, V, isFeasible);
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymGT(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible) {
|
||||
|
||||
// FIXME: For now have assuming x > y be the same as assuming sym != V;
|
||||
return AssumeSymNE(St, sym, V, isFeasible);
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymGE(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible) {
|
||||
|
||||
// FIXME: Primitive logic for now. Only reject a path if the value of
|
||||
// sym is a constant X and !(X >= V).
|
||||
|
||||
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
||||
isFeasible = *X >= V;
|
||||
return St;
|
||||
}
|
||||
|
||||
isFeasible = true;
|
||||
return St;
|
||||
}
|
||||
|
||||
const GRState*
|
||||
BasicConstraintManager::AssumeSymLE(const GRState* St, SymbolID sym,
|
||||
const llvm::APSInt& V, bool& isFeasible) {
|
||||
|
||||
// FIXME: Primitive logic for now. Only reject a path if the value of
|
||||
// sym is a constant X and !(X <= V).
|
||||
|
||||
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
||||
isFeasible = *X <= V;
|
||||
return St;
|
||||
}
|
||||
|
||||
isFeasible = true;
|
||||
return St;
|
||||
}
|
||||
Reference in New Issue
Block a user