[C++11] Replacing CGFunctionInfo arg iterators with iterator_range arguments(). Updating all of the usages of the iterators with range-based for loops.
llvm-svn: 204068
This commit is contained in:
@@ -368,9 +368,8 @@ public:
|
||||
|
||||
void computeInfo(CGFunctionInfo &FI) const override {
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyArgumentType(it->type);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyArgumentType(I.type);
|
||||
}
|
||||
|
||||
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||||
@@ -449,9 +448,8 @@ class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
|
||||
void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||||
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyArgumentType(it->type);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyArgumentType(I.type);
|
||||
}
|
||||
|
||||
llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||||
@@ -1000,10 +998,9 @@ void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
FI.setEffectiveCallingConvention(llvm::CallingConv::X86_CDeclMethod);
|
||||
|
||||
bool UsedInAlloca = false;
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it) {
|
||||
it->info = classifyArgumentType(it->type, State);
|
||||
UsedInAlloca |= (it->info.getKind() == ABIArgInfo::InAlloca);
|
||||
for (auto &I : FI.arguments()) {
|
||||
I.info = classifyArgumentType(I.type, State);
|
||||
UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
|
||||
}
|
||||
|
||||
// If we needed to use inalloca for any argument, do a second pass and rewrite
|
||||
@@ -2760,9 +2757,8 @@ void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
QualType RetTy = FI.getReturnType();
|
||||
FI.getReturnInfo() = classify(RetTy, true);
|
||||
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classify(it->type, false);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classify(I.type, false);
|
||||
}
|
||||
|
||||
llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||||
@@ -2905,21 +2901,20 @@ public:
|
||||
// when lowering the parameters in the caller and args in the callee.
|
||||
void computeInfo(CGFunctionInfo &FI) const override {
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it) {
|
||||
for (auto &I : FI.arguments()) {
|
||||
// We rely on the default argument classification for the most part.
|
||||
// One exception: An aggregate containing a single floating-point
|
||||
// or vector item must be passed in a register if one is available.
|
||||
const Type *T = isSingleElementStruct(it->type, getContext());
|
||||
const Type *T = isSingleElementStruct(I.type, getContext());
|
||||
if (T) {
|
||||
const BuiltinType *BT = T->getAs<BuiltinType>();
|
||||
if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
|
||||
QualType QT(T, 0);
|
||||
it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
|
||||
I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
it->info = classifyArgumentType(it->type);
|
||||
I.info = classifyArgumentType(I.type);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3297,15 +3292,14 @@ void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
resetAllocatedRegs();
|
||||
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it) {
|
||||
for (auto &I : FI.arguments()) {
|
||||
unsigned PreAllocationVFPs = AllocatedVFPs;
|
||||
unsigned PreAllocationGPRs = AllocatedGPRs;
|
||||
bool IsHA = false;
|
||||
bool IsCPRC = false;
|
||||
// 6.1.2.3 There is one VFP co-processor register class using registers
|
||||
// s0-s15 (d0-d7) for passing arguments.
|
||||
it->info = classifyArgumentType(it->type, IsHA, FI.isVariadic(), IsCPRC);
|
||||
I.info = classifyArgumentType(I.type, IsHA, FI.isVariadic(), IsCPRC);
|
||||
assert((IsCPRC || !IsHA) && "Homogeneous aggregates must be CPRCs");
|
||||
// If we do not have enough VFP registers for the HA, any VFP registers
|
||||
// that are unallocated are marked as unavailable. To achieve this, we add
|
||||
@@ -3315,7 +3309,7 @@ void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
if (IsHA && AllocatedVFPs > NumVFPs && PreAllocationVFPs < NumVFPs) {
|
||||
llvm::Type *PaddingTy = llvm::ArrayType::get(
|
||||
llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocationVFPs);
|
||||
it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
|
||||
I.info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
|
||||
}
|
||||
|
||||
// If we have allocated some arguments onto the stack (due to running
|
||||
@@ -3328,7 +3322,7 @@ void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) {
|
||||
llvm::Type *PaddingTy = llvm::ArrayType::get(
|
||||
llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
|
||||
it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
|
||||
I.info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4030,9 +4024,8 @@ void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
FreeIntRegs, FreeVFPRegs);
|
||||
|
||||
FreeIntRegs = FreeVFPRegs = 8;
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it) {
|
||||
it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
|
||||
for (auto &I : FI.arguments()) {
|
||||
I.info = classifyGenericType(I.type, FreeIntRegs, FreeVFPRegs);
|
||||
|
||||
}
|
||||
}
|
||||
@@ -4464,9 +4457,8 @@ ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
|
||||
|
||||
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyArgumentType(it->type);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyArgumentType(I.type);
|
||||
|
||||
// Always honor user-specified calling convention.
|
||||
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
||||
@@ -4548,9 +4540,8 @@ public:
|
||||
|
||||
void computeInfo(CGFunctionInfo &FI) const override {
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyArgumentType(it->type);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyArgumentType(I.type);
|
||||
}
|
||||
|
||||
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||||
@@ -5143,9 +5134,8 @@ void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
// Check if a pointer to an aggregate is passed as a hidden argument.
|
||||
uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
|
||||
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyArgumentType(it->type, Offset);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyArgumentType(I.type, Offset);
|
||||
}
|
||||
|
||||
llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||||
@@ -5308,9 +5298,8 @@ public:
|
||||
|
||||
void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyArgumentType(it->type);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyArgumentType(I.type);
|
||||
}
|
||||
|
||||
ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
|
||||
@@ -5661,9 +5650,8 @@ llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||||
|
||||
void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||||
FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
|
||||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||||
it != ie; ++it)
|
||||
it->info = classifyType(it->type, 16 * 8);
|
||||
for (auto &I : FI.arguments())
|
||||
I.info = classifyType(I.type, 16 * 8);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
Reference in New Issue
Block a user