Replace all weight-based interfaces in MBB with probability-based interfaces, and update all uses of old interfaces.

(This is the second attempt to submit this patch. The first caused two assertion
 failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)

The patch in http://reviews.llvm.org/D13745 is broken into four parts:

1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.

This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.

All uses of weight-based interfaces are now updated to use probability-based
ones.


Differential revision: http://reviews.llvm.org/D14973

llvm-svn: 254377
This commit is contained in:
Cong Hou
2015-12-01 05:29:22 +00:00
parent 27c25b1591
commit d97c100dc4
34 changed files with 304 additions and 425 deletions

View File

@@ -28,91 +28,61 @@ char MachineBranchProbabilityInfo::ID = 0;
void MachineBranchProbabilityInfo::anchor() { }
uint32_t MachineBranchProbabilityInfo::
getSumForBlock(const MachineBasicBlock *MBB, uint32_t &Scale) const {
// First we compute the sum with 64-bits of precision, ensuring that cannot
// overflow by bounding the number of weights considered. Hopefully no one
// actually needs 2^32 successors.
assert(MBB->succ_size() < UINT32_MAX);
uint64_t Sum = 0;
Scale = 1;
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I) {
uint32_t Weight = getEdgeWeight(MBB, I);
Sum += Weight;
}
// If the computed sum fits in 32-bits, we're done.
if (Sum <= UINT32_MAX)
return Sum;
// Otherwise, compute the scale necessary to cause the weights to fit, and
// re-sum with that scale applied.
assert((Sum / UINT32_MAX) < UINT32_MAX);
Scale = (Sum / UINT32_MAX) + 1;
Sum = 0;
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I) {
uint32_t Weight = getEdgeWeight(MBB, I);
Sum += Weight / Scale;
}
assert(Sum <= UINT32_MAX);
return Sum;
uint32_t MachineBranchProbabilityInfo::getEdgeWeight(
const MachineBasicBlock *Src,
MachineBasicBlock::const_succ_iterator Dst) const {
return Src->getSuccProbability(Dst).getNumerator();
}
uint32_t MachineBranchProbabilityInfo::
getEdgeWeight(const MachineBasicBlock *Src,
MachineBasicBlock::const_succ_iterator Dst) const {
uint32_t Weight = Src->getSuccWeight(Dst);
if (!Weight)
return DEFAULT_WEIGHT;
return Weight;
}
uint32_t MachineBranchProbabilityInfo::
getEdgeWeight(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const {
uint32_t MachineBranchProbabilityInfo::getEdgeWeight(
const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const {
// This is a linear search. Try to use the const_succ_iterator version when
// possible.
return getEdgeWeight(Src, std::find(Src->succ_begin(), Src->succ_end(), Dst));
}
BranchProbability MachineBranchProbabilityInfo::getEdgeProbability(
const MachineBasicBlock *Src,
MachineBasicBlock::const_succ_iterator Dst) const {
return Src->getSuccProbability(Dst);
}
BranchProbability MachineBranchProbabilityInfo::getEdgeProbability(
const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const {
// This is a linear search. Try to use the const_succ_iterator version when
// possible.
return getEdgeProbability(Src,
std::find(Src->succ_begin(), Src->succ_end(), Dst));
}
bool
MachineBranchProbabilityInfo::isEdgeHot(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const {
// Hot probability is at least 4/5 = 80%
// FIXME: Compare against a static "hot" BranchProbability.
return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
static BranchProbability HotProb(4, 5);
return getEdgeProbability(Src, Dst) > HotProb;
}
MachineBasicBlock *
MachineBranchProbabilityInfo::getHotSucc(MachineBasicBlock *MBB) const {
uint32_t MaxWeight = 0;
auto MaxProb = BranchProbability::getZero();
MachineBasicBlock *MaxSucc = nullptr;
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I) {
uint32_t Weight = getEdgeWeight(MBB, I);
if (Weight > MaxWeight) {
MaxWeight = Weight;
auto Prob = getEdgeProbability(MBB, I);
if (Prob > MaxProb) {
MaxProb = Prob;
MaxSucc = *I;
}
}
if (getEdgeProbability(MBB, MaxSucc) >= BranchProbability(4, 5))
static BranchProbability HotProb(4, 5);
if (getEdgeProbability(MBB, MaxSucc) >= HotProb)
return MaxSucc;
return nullptr;
}
BranchProbability MachineBranchProbabilityInfo::getEdgeProbability(
const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const {
uint32_t Scale = 1;
uint32_t D = getSumForBlock(Src, Scale);
uint32_t N = getEdgeWeight(Src, Dst) / Scale;
return BranchProbability(N, D);
}
raw_ostream &MachineBranchProbabilityInfo::printEdgeProbability(
raw_ostream &OS, const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const {