[C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
This commit is contained in:
@@ -820,7 +820,7 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
|
||||
if (ExpressionChanged == I)
|
||||
break;
|
||||
ExpressionChanged->moveBefore(I);
|
||||
ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
|
||||
ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
|
||||
} while (1);
|
||||
|
||||
// Throw away any left over nodes from the original expression.
|
||||
@@ -862,8 +862,7 @@ static Value *NegateValue(Value *V, Instruction *BI) {
|
||||
|
||||
// Okay, we need to materialize a negated version of V with an instruction.
|
||||
// Scan the use lists of V to see if we have one already.
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
||||
User *U = *UI;
|
||||
for (User *U : V->users()) {
|
||||
if (!BinaryOperator::isNeg(U)) continue;
|
||||
|
||||
// We found one! Now we have to make sure that the definition dominates
|
||||
@@ -913,8 +912,8 @@ static bool ShouldBreakUpSubtract(Instruction *Sub) {
|
||||
isReassociableOp(Sub->getOperand(1), Instruction::Sub))
|
||||
return true;
|
||||
if (Sub->hasOneUse() &&
|
||||
(isReassociableOp(Sub->use_back(), Instruction::Add) ||
|
||||
isReassociableOp(Sub->use_back(), Instruction::Sub)))
|
||||
(isReassociableOp(Sub->user_back(), Instruction::Add) ||
|
||||
isReassociableOp(Sub->user_back(), Instruction::Sub)))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
@@ -1781,9 +1780,9 @@ void Reassociate::EraseInst(Instruction *I) {
|
||||
// If this is a node in an expression tree, climb to the expression root
|
||||
// and add that since that's where optimization actually happens.
|
||||
unsigned Opcode = Op->getOpcode();
|
||||
while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
|
||||
while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
|
||||
Visited.insert(Op))
|
||||
Op = Op->use_back();
|
||||
Op = Op->user_back();
|
||||
RedoInsts.insert(Op);
|
||||
}
|
||||
}
|
||||
@@ -1801,8 +1800,8 @@ void Reassociate::OptimizeInst(Instruction *I) {
|
||||
// is used by a reassociable multiply or add, turn into a multiply.
|
||||
if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
|
||||
(I->hasOneUse() &&
|
||||
(isReassociableOp(I->use_back(), Instruction::Mul) ||
|
||||
isReassociableOp(I->use_back(), Instruction::Add)))) {
|
||||
(isReassociableOp(I->user_back(), Instruction::Mul) ||
|
||||
isReassociableOp(I->user_back(), Instruction::Add)))) {
|
||||
Instruction *NI = ConvertShiftToMul(I);
|
||||
RedoInsts.insert(I);
|
||||
MadeChange = true;
|
||||
@@ -1855,7 +1854,7 @@ void Reassociate::OptimizeInst(Instruction *I) {
|
||||
// and if this is not an inner node of a multiply tree.
|
||||
if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
|
||||
(!I->hasOneUse() ||
|
||||
!isReassociableOp(I->use_back(), Instruction::Mul))) {
|
||||
!isReassociableOp(I->user_back(), Instruction::Mul))) {
|
||||
Instruction *NI = LowerNegateToMultiply(I);
|
||||
RedoInsts.insert(I);
|
||||
MadeChange = true;
|
||||
@@ -1871,13 +1870,13 @@ void Reassociate::OptimizeInst(Instruction *I) {
|
||||
// If this is an interior node of a reassociable tree, ignore it until we
|
||||
// get to the root of the tree, to avoid N^2 analysis.
|
||||
unsigned Opcode = BO->getOpcode();
|
||||
if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
|
||||
if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
|
||||
return;
|
||||
|
||||
// If this is an add tree that is used by a sub instruction, ignore it
|
||||
// until we process the subtract.
|
||||
if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
|
||||
cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
|
||||
cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
|
||||
return;
|
||||
|
||||
ReassociateExpression(BO);
|
||||
@@ -1929,7 +1928,7 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
|
||||
// In this case we reassociate to put the negation on the outside so that we
|
||||
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
|
||||
if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
|
||||
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
|
||||
cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
|
||||
isa<ConstantInt>(Ops.back().Op) &&
|
||||
cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
|
||||
ValueEntry Tmp = Ops.pop_back_val();
|
||||
|
||||
Reference in New Issue
Block a user