[SLP] Support for horizontal min/max reduction.

Summary:
SLP vectorizer supports horizontal reductions for Add/FAdd binary operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for binary operation reductions and getMinMaxReductionCost() for min/max reductions.
Patch fixes PR26956.

Reviewers: spatel, mkuper, hfinkel, RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D27846

llvm-svn: 314101
This commit is contained in:
Alexey Bataev
2017-09-25 13:34:59 +00:00
parent 46f5df1a20
commit ccce7afee8
3 changed files with 1853 additions and 1300 deletions

View File

@@ -4647,16 +4647,24 @@ namespace {
/// *p =
///
class HorizontalReduction {
SmallVector<Value *, 16> ReductionOps;
using ReductionOpsType = SmallVector<Value *, 16>;
using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
ReductionOpsListType ReductionOps;
SmallVector<Value *, 32> ReducedVals;
// Use map vector to make stable output.
MapVector<Instruction *, Value *> ExtraArgs;
/// Kind of the reduction data.
enum ReductionKind {
RK_None, /// Not a reduction.
RK_Arithmetic, /// Binary reduction data.
RK_Min, /// Minimum reduction data.
RK_UMin, /// Unsigned minimum reduction data.
RK_Max, /// Maximum reduction data.
RK_UMax, /// Unsigned maximum reduction data.
};
/// Contains info about operation, like its opcode, left and right operands.
struct OperationData {
/// true if the operation is a reduced value, false if reduction operation.
bool IsReducedValue = false;
class OperationData {
/// Opcode of the instruction.
unsigned Opcode = 0;
@@ -4665,12 +4673,52 @@ class HorizontalReduction {
/// Right operand of the reduction operation.
Value *RHS = nullptr;
/// Kind of the reduction operation.
ReductionKind Kind = RK_None;
/// True if float point min/max reduction has no NaNs.
bool NoNaN = false;
/// Checks if the reduction operation can be vectorized.
bool isVectorizable() const {
return LHS && RHS &&
// We currently only support adds.
(Opcode == Instruction::Add || Opcode == Instruction::FAdd);
// We currently only support adds && min/max reductions.
((Kind == RK_Arithmetic &&
(Opcode == Instruction::Add || Opcode == Instruction::FAdd)) ||
((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
(Kind == RK_Min || Kind == RK_Max)) ||
(Opcode == Instruction::ICmp &&
(Kind == RK_UMin || Kind == RK_UMax)));
}
/// Creates reduction operation with the current opcode.
Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
assert(isVectorizable() &&
"Expected add|fadd or min/max reduction operation.");
Value *Cmp;
switch (Kind) {
case RK_Arithmetic:
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
Name);
case RK_Min:
Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
: Builder.CreateFCmpOLT(LHS, RHS);
break;
case RK_Max:
Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
: Builder.CreateFCmpOGT(LHS, RHS);
break;
case RK_UMin:
assert(Opcode == Instruction::ICmp && "Expected integer types.");
Cmp = Builder.CreateICmpULT(LHS, RHS);
break;
case RK_UMax:
assert(Opcode == Instruction::ICmp && "Expected integer types.");
Cmp = Builder.CreateICmpUGT(LHS, RHS);
break;
case RK_None:
llvm_unreachable("Unknown reduction operation.");
}
return Builder.CreateSelect(Cmp, LHS, RHS, Name);
}
public:
@@ -4678,43 +4726,156 @@ class HorizontalReduction {
/// Construction for reduced values. They are identified by opcode only and
/// don't have associated LHS/RHS values.
explicit OperationData(Value *V) : IsReducedValue(true) {
explicit OperationData(Value *V) : Kind(RK_None) {
if (auto *I = dyn_cast<Instruction>(V))
Opcode = I->getOpcode();
}
/// Constructor for binary reduction operations with opcode and its left and
/// Constructor for reduction operations with opcode and its left and
/// right operands.
OperationData(unsigned Opcode, Value *LHS, Value *RHS)
: Opcode(Opcode), LHS(LHS), RHS(RHS) {}
OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
bool NoNaN = false)
: Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
assert(Kind != RK_None && "One of the reduction operations is expected.");
}
explicit operator bool() const { return Opcode; }
/// Get the index of the first operand.
unsigned getFirstOperandIndex() const {
assert(!!*this && "The opcode is not set.");
switch (Kind) {
case RK_Min:
case RK_UMin:
case RK_Max:
case RK_UMax:
return 1;
case RK_Arithmetic:
case RK_None:
break;
}
return 0;
}
/// Total number of operands in the reduction operation.
unsigned getNumberOfOperands() const {
assert(!IsReducedValue && !!*this && LHS && RHS &&
assert(Kind != RK_None && !!*this && LHS && RHS &&
"Expected reduction operation.");
return 2;
switch (Kind) {
case RK_Arithmetic:
return 2;
case RK_Min:
case RK_UMin:
case RK_Max:
case RK_UMax:
return 3;
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Expected number of uses for reduction operations/reduced values.
unsigned getRequiredNumberOfUses() const {
assert(!IsReducedValue && !!*this && LHS && RHS &&
/// Checks if the operation has the same parent as \p P.
bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
assert(Kind != RK_None && !!*this && LHS && RHS &&
"Expected reduction operation.");
return 1;
if (!IsRedOp)
return I->getParent() == P;
switch (Kind) {
case RK_Arithmetic:
// Arithmetic reduction operation must be used once only.
return I->getParent() == P;
case RK_Min:
case RK_UMin:
case RK_Max:
case RK_UMax: {
// SelectInst must be used twice while the condition op must have single
// use only.
auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
return I->getParent() == P && Cmp && Cmp->getParent() == P;
}
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Expected number of uses for reduction operations/reduced values.
bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
assert(Kind != RK_None && !!*this && LHS && RHS &&
"Expected reduction operation.");
switch (Kind) {
case RK_Arithmetic:
return I->hasOneUse();
case RK_Min:
case RK_UMin:
case RK_Max:
case RK_UMax:
return I->hasNUses(2) &&
(!IsReductionOp ||
cast<SelectInst>(I)->getCondition()->hasOneUse());
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Initializes the list of reduction operations.
void initReductionOps(ReductionOpsListType &ReductionOps) {
assert(Kind != RK_None && !!*this && LHS && RHS &&
"Expected reduction operation.");
switch (Kind) {
case RK_Arithmetic:
ReductionOps.assign(1, ReductionOpsType());
break;
case RK_Min:
case RK_UMin:
case RK_Max:
case RK_UMax:
ReductionOps.assign(2, ReductionOpsType());
break;
case RK_None:
llvm_unreachable("Reduction kind is not set");
}
}
/// Add all reduction operations for the reduction instruction \p I.
void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
assert(Kind != RK_None && !!*this && LHS && RHS &&
"Expected reduction operation.");
switch (Kind) {
case RK_Arithmetic:
ReductionOps[0].emplace_back(I);
break;
case RK_Min:
case RK_UMin:
case RK_Max:
case RK_UMax:
ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
ReductionOps[1].emplace_back(I);
break;
case RK_None:
llvm_unreachable("Reduction kind is not set");
}
}
/// Checks if instruction is associative and can be vectorized.
bool isAssociative(Instruction *I) const {
assert(!IsReducedValue && *this && LHS && RHS &&
assert(Kind != RK_None && *this && LHS && RHS &&
"Expected reduction operation.");
return I->isAssociative();
switch (Kind) {
case RK_Arithmetic:
return I->isAssociative();
case RK_Min:
case RK_Max:
return Opcode == Instruction::ICmp ||
cast<Instruction>(I->getOperand(0))->hasUnsafeAlgebra();
case RK_UMin:
case RK_UMax:
assert(Opcode == Instruction::ICmp &&
"Only integer compare operation is expected.");
return true;
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Checks if the reduction operation can be vectorized.
@@ -4725,18 +4886,17 @@ class HorizontalReduction {
/// Checks if two operation data are both a reduction op or both a reduced
/// value.
bool operator==(const OperationData &OD) {
assert(((IsReducedValue != OD.IsReducedValue) ||
((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
"One of the comparing operations is incorrect.");
return this == &OD ||
(IsReducedValue == OD.IsReducedValue && Opcode == OD.Opcode);
return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
}
bool operator!=(const OperationData &OD) { return !(*this == OD); }
void clear() {
IsReducedValue = false;
Opcode = 0;
LHS = nullptr;
RHS = nullptr;
Kind = RK_None;
NoNaN = false;
}
/// Get the opcode of the reduction operation.
@@ -4745,16 +4905,99 @@ class HorizontalReduction {
return Opcode;
}
/// Get kind of reduction data.
ReductionKind getKind() const { return Kind; }
Value *getLHS() const { return LHS; }
Value *getRHS() const { return RHS; }
Type *getConditionType() const {
switch (Kind) {
case RK_Arithmetic:
return nullptr;
case RK_Min:
case RK_Max:
case RK_UMin:
case RK_UMax:
return CmpInst::makeCmpResultType(LHS->getType());
case RK_None:
break;
}
llvm_unreachable("Reduction kind is not set");
}
/// Creates reduction operation with the current opcode.
Value *createOp(IRBuilder<> &Builder, const Twine &Name = "") const {
assert(!IsReducedValue &&
(Opcode == Instruction::FAdd || Opcode == Instruction::Add) &&
"Expected add|fadd reduction operation.");
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
Name);
/// Creates reduction operation with the current opcode with the IR flags
/// from \p ReductionOps.
Value *createOp(IRBuilder<> &Builder, const Twine &Name,
const ReductionOpsListType &ReductionOps) const {
assert(isVectorizable() &&
"Expected add|fadd or min/max reduction operation.");
auto *Op = createOp(Builder, Name);
switch (Kind) {
case RK_Arithmetic:
propagateIRFlags(Op, ReductionOps[0]);
return Op;
case RK_Min:
case RK_Max:
case RK_UMin:
case RK_UMax:
propagateIRFlags(cast<SelectInst>(Op)->getCondition(), ReductionOps[0]);
propagateIRFlags(Op, ReductionOps[1]);
return Op;
case RK_None:
break;
}
llvm_unreachable("Unknown reduction operation.");
}
/// Creates reduction operation with the current opcode with the IR flags
/// from \p I.
Value *createOp(IRBuilder<> &Builder, const Twine &Name,
Instruction *I) const {
assert(isVectorizable() &&
"Expected add|fadd or min/max reduction operation.");
auto *Op = createOp(Builder, Name);
switch (Kind) {
case RK_Arithmetic:
propagateIRFlags(Op, I);
return Op;
case RK_Min:
case RK_Max:
case RK_UMin:
case RK_UMax:
propagateIRFlags(cast<SelectInst>(Op)->getCondition(),
cast<SelectInst>(I)->getCondition());
propagateIRFlags(Op, I);
return Op;
case RK_None:
break;
}
llvm_unreachable("Unknown reduction operation.");
}
TargetTransformInfo::ReductionFlags getFlags() const {
TargetTransformInfo::ReductionFlags Flags;
Flags.NoNaN = NoNaN;
switch (Kind) {
case RK_Arithmetic:
break;
case RK_Min:
Flags.IsSigned = Opcode == Instruction::ICmp;
Flags.IsMaxOp = false;
break;
case RK_Max:
Flags.IsSigned = Opcode == Instruction::ICmp;
Flags.IsMaxOp = true;
break;
case RK_UMin:
Flags.IsSigned = false;
Flags.IsMaxOp = false;
break;
case RK_UMax:
Flags.IsSigned = false;
Flags.IsMaxOp = true;
break;
case RK_None:
llvm_unreachable("Reduction kind is not set");
}
return Flags;
}
};
@@ -4796,8 +5039,32 @@ class HorizontalReduction {
Value *LHS;
Value *RHS;
if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V))
return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS);
if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
RK_Arithmetic);
}
if (auto *Select = dyn_cast<SelectInst>(V)) {
// Look for a min/max pattern.
if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
} else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
} else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(
Instruction::FCmp, LHS, RHS, RK_Min,
cast<Instruction>(Select->getCondition())->hasNoNaNs());
} else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
} else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
} else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
return OperationData(
Instruction::FCmp, LHS, RHS, RK_Max,
cast<Instruction>(Select->getCondition())->hasNoNaNs());
}
}
return OperationData(V);
}
@@ -4840,7 +5107,7 @@ public:
// trees containing only binary operators.
SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
const unsigned NUses = ReductionData.getRequiredNumberOfUses();
ReductionData.initReductionOps(ReductionOps);
while (!Stack.empty()) {
Instruction *TreeN = Stack.back().first;
unsigned EdgeToVist = Stack.back().second++;
@@ -4866,7 +5133,7 @@ public:
markExtraArg(Stack[Stack.size() - 2], TreeN);
ExtraArgs.erase(TreeN);
} else
ReductionOps.push_back(TreeN);
ReductionData.addReductionOps(TreeN, ReductionOps);
}
// Retract.
Stack.pop_back();
@@ -4884,8 +5151,10 @@ public:
// reduced value class.
if (I && (!ReducedValueData || OpData == ReducedValueData ||
OpData == ReductionData)) {
const bool IsReductionOperation = OpData == ReductionData;
// Only handle trees in the current basic block.
if (I->getParent() != B->getParent()) {
if (!ReductionData.hasSameParent(I, B->getParent(),
IsReductionOperation)) {
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), I);
continue;
@@ -4893,13 +5162,15 @@ public:
// Each tree node needs to have minimal number of users except for the
// ultimate reduction.
if (!I->hasNUses(NUses) && I != B) {
if (!ReductionData.hasRequiredNumberOfUses(I,
OpData == ReductionData) &&
I != B) {
// I is an extra argument for TreeN (its parent operation).
markExtraArg(Stack.back(), I);
continue;
}
if (OpData == ReductionData) {
if (IsReductionOperation) {
// We need to be able to reassociate the reduction operations.
if (!OpData.isAssociative(I)) {
// I is an extra argument for TreeN (its parent operation).
@@ -4953,12 +5224,15 @@ public:
// to use it.
for (auto &Pair : ExtraArgs)
ExternallyUsedValues[Pair.second].push_back(Pair.first);
SmallVector<Value *, 16> IgnoreList;
for (auto &V : ReductionOps)
IgnoreList.append(V.begin(), V.end());
while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
V.buildTree(VL, ExternallyUsedValues, ReductionOps);
V.buildTree(VL, ExternallyUsedValues, IgnoreList);
if (V.shouldReorder()) {
SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
V.buildTree(Reversed, ExternallyUsedValues, ReductionOps);
V.buildTree(Reversed, ExternallyUsedValues, IgnoreList);
}
if (V.isTreeTinyAndNotFullyVectorizable())
break;
@@ -4986,13 +5260,14 @@ public:
// Emit a reduction.
Value *ReducedSubTree =
emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI);
emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
if (VectorizedTree) {
Builder.SetCurrentDebugLocation(Loc);
OperationData VectReductionData(ReductionData.getOpcode(),
VectorizedTree, ReducedSubTree);
VectorizedTree = VectReductionData.createOp(Builder, "bin.rdx");
propagateIRFlags(VectorizedTree, ReductionOps);
VectorizedTree, ReducedSubTree,
ReductionData.getKind());
VectorizedTree =
VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
} else
VectorizedTree = ReducedSubTree;
i += ReduxWidth;
@@ -5005,9 +5280,9 @@ public:
auto *I = cast<Instruction>(ReducedVals[i]);
Builder.SetCurrentDebugLocation(I->getDebugLoc());
OperationData VectReductionData(ReductionData.getOpcode(),
VectorizedTree, I);
VectorizedTree = VectReductionData.createOp(Builder);
propagateIRFlags(VectorizedTree, ReductionOps);
VectorizedTree, I,
ReductionData.getKind());
VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
}
for (auto &Pair : ExternallyUsedValues) {
assert(!Pair.second.empty() &&
@@ -5016,9 +5291,9 @@ public:
for (auto *I : Pair.second) {
Builder.SetCurrentDebugLocation(I->getDebugLoc());
OperationData VectReductionData(ReductionData.getOpcode(),
VectorizedTree, Pair.first);
VectorizedTree = VectReductionData.createOp(Builder, "bin.extra");
propagateIRFlags(VectorizedTree, I);
VectorizedTree, Pair.first,
ReductionData.getKind());
VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
}
}
// Update users.
@@ -5038,19 +5313,58 @@ private:
Type *ScalarTy = FirstReducedVal->getType();
Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
int PairwiseRdxCost =
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
/*IsPairwiseForm=*/true);
int SplittingRdxCost =
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
/*IsPairwiseForm=*/false);
int PairwiseRdxCost;
int SplittingRdxCost;
switch (ReductionData.getKind()) {
case RK_Arithmetic:
PairwiseRdxCost =
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
/*IsPairwiseForm=*/true);
SplittingRdxCost =
TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
/*IsPairwiseForm=*/false);
break;
case RK_Min:
case RK_Max:
case RK_UMin:
case RK_UMax: {
Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
ReductionData.getKind() == RK_UMax;
PairwiseRdxCost =
TTI->getMinMaxReductionCost(VecTy, VecCondTy,
/*IsPairwiseForm=*/true, IsUnsigned);
SplittingRdxCost =
TTI->getMinMaxReductionCost(VecTy, VecCondTy,
/*IsPairwiseForm=*/false, IsUnsigned);
break;
}
case RK_None:
llvm_unreachable("Expected arithmetic or min/max reduction operation");
}
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
int ScalarReduxCost =
(ReduxWidth - 1) *
TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
int ScalarReduxCost;
switch (ReductionData.getKind()) {
case RK_Arithmetic:
ScalarReduxCost =
TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
break;
case RK_Min:
case RK_Max:
case RK_UMin:
case RK_UMax:
ScalarReduxCost =
TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
break;
case RK_None:
llvm_unreachable("Expected arithmetic or min/max reduction operation");
}
ScalarReduxCost *= (ReduxWidth - 1);
DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
<< " for reduction that starts with " << *FirstReducedVal
@@ -5063,8 +5377,7 @@ private:
/// \brief Emit a horizontal reduction of the vectorized value.
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
unsigned ReduxWidth, ArrayRef<Value *> RedOps,
const TargetTransformInfo *TTI) {
unsigned ReduxWidth, const TargetTransformInfo *TTI) {
assert(VectorizedValue && "Need to have a vectorized tree node");
assert(isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now");
@@ -5072,7 +5385,7 @@ private:
if (!IsPairwiseReduction)
return createSimpleTargetReduction(
Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
TargetTransformInfo::ReductionFlags(), RedOps);
ReductionData.getFlags(), ReductionOps.back());
Value *TmpVec = VectorizedValue;
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
@@ -5087,9 +5400,8 @@ private:
TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
"rdx.shuf.r");
OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
RightShuf);
TmpVec = VectReductionData.createOp(Builder, "bin.rdx");
propagateIRFlags(TmpVec, RedOps);
RightShuf, ReductionData.getKind());
TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
}
// The result is in the first element of the vector.
@@ -5249,9 +5561,11 @@ static bool tryToVectorizeHorReductionOrInstOperands(
auto *Inst = dyn_cast<Instruction>(V);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BinaryOperator>(Inst)) {
auto *BI = dyn_cast<BinaryOperator>(Inst);
auto *SI = dyn_cast<SelectInst>(Inst);
if (BI || SI) {
HorizontalReduction HorRdx;
if (HorRdx.matchAssociativeReduction(P, BI)) {
if (HorRdx.matchAssociativeReduction(P, Inst)) {
if (HorRdx.tryToReduce(R, TTI)) {
Res = true;
// Set P to nullptr to avoid re-analysis of phi node in
@@ -5260,7 +5574,7 @@ static bool tryToVectorizeHorReductionOrInstOperands(
continue;
}
}
if (P) {
if (P && BI) {
Inst = dyn_cast<Instruction>(BI->getOperand(0));
if (Inst == P)
Inst = dyn_cast<Instruction>(BI->getOperand(1));