Back out r132209; it's breaking nightly tests.

llvm-svn: 132219
This commit is contained in:
Eli Friedman
2011-05-27 21:32:17 +00:00
parent 22ae696be7
commit 380b8dad6b
10 changed files with 62 additions and 92 deletions

View File

@@ -112,18 +112,11 @@ static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
}
llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
const llvm::FunctionType *FTy =
llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
if (CGM.getLangOptions().SjLjExceptions)
return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
}
llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
const llvm::FunctionType *FTy =
llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), Int8PtrTy,
/*IsVarArgs=*/false);
if (CGM.getLangOptions().SjLjExceptions)
return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
@@ -570,59 +563,47 @@ llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
return LP;
}
// This code contains a hack to work around a design flaw in
// LLVM's EH IR which breaks semantics after inlining. This same
// hack is implemented in llvm-gcc.
//
// The LLVM EH abstraction is basically a thin veneer over the
// traditional GCC zero-cost design: for each range of instructions
// in the function, there is (at most) one "landing pad" with an
// associated chain of EH actions. A language-specific personality
// function interprets this chain of actions and (1) decides whether
// or not to resume execution at the landing pad and (2) if so,
// provides an integer indicating why it's stopping. In LLVM IR,
// the association of a landing pad with a range of instructions is
// achieved via an invoke instruction, the chain of actions becomes
// the arguments to the @llvm.eh.selector call, and the selector
// call returns the integer indicator. Other than the required
// presence of two intrinsic function calls in the landing pad,
// the IR exactly describes the layout of the output code.
//
// A principal advantage of this design is that it is completely
// language-agnostic; in theory, the LLVM optimizers can treat
// landing pads neutrally, and targets need only know how to lower
// the intrinsics to have a functioning exceptions system (assuming
// that platform exceptions follow something approximately like the
// GCC design). Unfortunately, landing pads cannot be combined in a
// language-agnostic way: given selectors A and B, there is no way
// to make a single landing pad which faithfully represents the
// semantics of propagating an exception first through A, then
// through B, without knowing how the personality will interpret the
// (lowered form of the) selectors. This means that inlining has no
// choice but to crudely chain invokes (i.e., to ignore invokes in
// the inlined function, but to turn all unwindable calls into
// invokes), which is only semantically valid if every unwind stops
// at every landing pad.
//
// Therefore, the invoke-inline hack is to guarantee that every
// landing pad has a catch-all.
enum CleanupHackLevel_t {
/// A level of hack that requires that all landing pads have
/// catch-alls.
CHL_MandatoryCatchall,
/// A level of hack that requires that all landing pads handle
/// cleanups.
CHL_MandatoryCleanup,
/// No hacks at all; ideal IR generation.
CHL_Ideal
};
const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
assert(EHStack.requiresLandingPad());
// This function contains a hack to work around a design flaw in
// LLVM's EH IR which breaks semantics after inlining. This same
// hack is implemented in llvm-gcc.
//
// The LLVM EH abstraction is basically a thin veneer over the
// traditional GCC zero-cost design: for each range of instructions
// in the function, there is (at most) one "landing pad" with an
// associated chain of EH actions. A language-specific personality
// function interprets this chain of actions and (1) decides whether
// or not to resume execution at the landing pad and (2) if so,
// provides an integer indicating why it's stopping. In LLVM IR,
// the association of a landing pad with a range of instructions is
// achieved via an invoke instruction, the chain of actions becomes
// the arguments to the @llvm.eh.selector call, and the selector
// call returns the integer indicator. Other than the required
// presence of two intrinsic function calls in the landing pad,
// the IR exactly describes the layout of the output code.
//
// A principal advantage of this design is that it is completely
// language-agnostic; in theory, the LLVM optimizers can treat
// landing pads neutrally, and targets need only know how to lower
// the intrinsics to have a functioning exceptions system (assuming
// that platform exceptions follow something approximately like the
// GCC design). Unfortunately, landing pads cannot be combined in a
// language-agnostic way: given selectors A and B, there is no way
// to make a single landing pad which faithfully represents the
// semantics of propagating an exception first through A, then
// through B, without knowing how the personality will interpret the
// (lowered form of the) selectors. This means that inlining has no
// choice but to crudely chain invokes (i.e., to ignore invokes in
// the inlined function, but to turn all unwindable calls into
// invokes), which is only semantically valid if every unwind stops
// at every landing pad.
//
// Therefore, the invoke-inline hack is to guarantee that every
// landing pad has a catch-all.
const bool UseInvokeInlineHack = true;
for (EHScopeStack::iterator ir = EHStack.begin(); ; ) {
assert(ir != EHStack.end() &&
"stack requiring landing pad is nothing but non-EH scopes?");
@@ -755,23 +736,16 @@ llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
EHSelector.append(EHFilters.begin(), EHFilters.end());
// Also check whether we need a cleanup.
if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup)
EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall
if (UseInvokeInlineHack || HasEHCleanup)
EHSelector.push_back(UseInvokeInlineHack
? getCatchAllValue(*this)
: getCleanupValue(*this));
// Otherwise, signal that we at least have cleanups.
} else if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) {
EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall
} else if (UseInvokeInlineHack || HasEHCleanup) {
EHSelector.push_back(UseInvokeInlineHack
? getCatchAllValue(*this)
: getCleanupValue(*this));
// At the MandatoryCleanup hack level, we don't need to actually
// spuriously tell the unwinder that we have cleanups, but we do
// need to always be prepared to handle cleanups.
} else if (CleanupHackLevel == CHL_MandatoryCleanup) {
// Just don't decrement LastToEmitInLoop.
} else {
assert(LastToEmitInLoop > 2);
LastToEmitInLoop--;
@@ -859,7 +833,7 @@ llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
// If there was a cleanup, we'll need to actually check whether we
// landed here because the filter triggered.
if (CleanupHackLevel != CHL_Ideal || HasEHCleanup) {
if (UseInvokeInlineHack || HasEHCleanup) {
llvm::BasicBlock *RethrowBB = createBasicBlock("cleanup");
llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected");
@@ -869,11 +843,10 @@ llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
Builder.CreateCondBr(FailsFilter, UnexpectedBB, RethrowBB);
// The rethrow block is where we land if this was a cleanup.
// TODO: can this be _Unwind_Resume if the InvokeInlineHack is off?
EmitBlock(RethrowBB);
llvm::Constant *RethrowFn =
CleanupHackLevel == CHL_MandatoryCatchall ? getUnwindResumeOrRethrowFn()
: getUnwindResumeFn();
Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot()))
Builder.CreateCall(getUnwindResumeOrRethrowFn(),
Builder.CreateLoad(getExceptionSlot()))
->setDoesNotReturn();
Builder.CreateUnreachable();
@@ -890,7 +863,7 @@ llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
Builder.CreateUnreachable();
// ...or a normal catch handler...
} else if (CleanupHackLevel == CHL_Ideal && !HasEHCleanup) {
} else if (!UseInvokeInlineHack && !HasEHCleanup) {
llvm::Value *Type = EHSelector.back();
EmitBranchThroughEHCleanup(EHHandlers[Type]);
@@ -1471,9 +1444,7 @@ CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() {
if (!RethrowName.empty())
RethrowFn = getCatchallRethrowFn(*this, RethrowName);
else
RethrowFn = (CleanupHackLevel == CHL_MandatoryCatchall
? getUnwindResumeOrRethrowFn()
: getUnwindResumeFn());
RethrowFn = getUnwindResumeOrRethrowFn();
Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot()))
->setDoesNotReturn();